RESUMO
Transcription factor (TF) target search on genome is highly essential for gene expression and regulation. High-resolution determination of TF diffusion along DNA remains technically challenging. Here, we constructed a TF model system using the plant WRKY domain protein in complex with DNA from crystallography and demonstrated microsecond diffusion dynamics of WRKY on DNA by employing all-atom molecular-dynamics (MD) simulations. Notably, we found that WRKY preferentially binds to one strand of DNA with significant energetic bias compared with the other, or nonpreferred strand. The preferential DNA-strand binding becomes most prominent in the static process, from nonspecific to specific DNA binding, but less distinct during diffusive movements of the domain protein on the DNA. Remarkably, without employing acceleration forces or bias, we captured a complete one-base-pair stepping cycle of the protein tracking along major groove of DNA with a homogeneous poly-adenosine sequence, as individual hydrogen bonds break and reform at the protein-DNA binding interface. Further DNA-groove tracking motions of the protein forward or backward, with occasional sliding as well as strand crossing to minor groove of DNA, were also captured. The processive diffusion of WRKY along DNA has been further sampled via coarse-grained MD simulations. The study thus provides structural dynamics details on diffusion of a small TF domain protein, suggests how the protein approaches a specific recognition site on DNA, and supports further high-precision experimental detection. The stochastic movements revealed in the TF diffusion also provide general clues about how other protein walkers step and slide along DNA.
Assuntos
Proteínas de Arabidopsis/química , Arabidopsis/química , DNA de Plantas/química , Simulação de Dinâmica Molecular , Fatores de Transcrição/química , Domínios ProteicosRESUMO
Improving yield is one of the most important targets of sesame breeding. Identifying quantitative trait loci (QTLs) of yield-related traits is a prerequisite for marker-assisted selection (MAS) and QTL/gene cloning. In this study, a BC1 population was developed and genotyped with the specific-locus amplified fragment (SLAF) sequencing technology, and a high-density genetic map was constructed. The map consisted of 13 linkage groups, contained 3528 SLAF markers, and covered a total of 1312.52 cM genetic distance, with an average distance of 0.37 cM between adjacent markers. Based on the map, 46 significant QTLs were identified for seven yield-related traits across three environments. These QTLs distributed on 11 linkage groups, each explaining 2.34-71.41% of the phenotypic variation. Of the QTLs, 23 were stable QTLs that were detected in more than one environment, and 20 were major QTLs that explained more than 10% of the corresponding phenotypic variation in at least one environment. Favorable alleles of 38 QTLs originated from the locally adapted variety, Yuzhi 4; the exotic germplasm line, BS, contributed favorable alleles to only 8 QTLs. The results should provide useful information for future molecular breeding and functional gene cloning. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-021-01236-x.
RESUMO
The real-time monitoring of cerebral hemorrhage can reduce its disability and fatality rates greatly. On the basis of magnetic induction phase shift, we in this study used filter and amplifier hardware module, NI-PXI data-acquisition system and LabVIEW software to set up an experiment system. We used Band-pass sample method and correlation phase demodulation algorithm in the system. In order to test and evaluate the performance of the system, we carried out saline simulation experiments of brain hemorrhage. We also carried out rabbit cerebral hemorrhage experiments. The results of both saline simulation and animal experiments suggested that our monitoring system had a high phase detection precision, and it needed only about 0.030 4s to finish a single phase shift measurement, and the change of phase shift was directly proportional to the volume of saline or blood. The experimental results were consistent with theory. As a result, this system has the ability of real-time monitoring the progression of cerebral hemorrhage precisely, with many distinguished features, such as low cost, high phase detection precision, high sensitivity of response so that it has showed a good application prospect.
Assuntos
Hemorragia Cerebral/diagnóstico , Magnetismo , Algoritmos , Animais , Sistemas Computacionais , Coelhos , SoftwareRESUMO
This study was aimed to improve the sensitivity of magnetic induction phase shift detection system for cerebral hemorrhage. In the study, a cerebral hemorrhage model with 13 rabbits was established by injection of autologous blood and the cerebral hemorrhage was detected by utilizing magnetic induction phase shift spectroscopy (MIPSS) detection method under the feature band. Sixty five groups of phase shift spectroscopy data were obtained. According to the characteristics of cerebral hemorrhage phase shift spectroscopy under the feature hand, an effective method, B-F distribution, to diagnose the severity of cerebral hemorrhage was designed. The results showed that using MIPSS detection method under feature band, the phase shift obviously growed with increase of injection volume of autologous blood, and the phase shift induced by a 3-mL injection reached -7.750 3 degrees ± 1.420 4 degrees. B-F distribution could effectively diagnose the severity of cerebral hemorrhage. It can be concluded that the sensitivity of the cerebral hemorrhage magnetic induction detection system is improved by one order of magnitude with the MIPSS detection method under the feature band.
Assuntos
Hemorragia Cerebral/diagnóstico , Magnetismo , Análise Espectral/métodos , Animais , Fenômenos Magnéticos , CoelhosRESUMO
Seed size and shape are important traits that determine seed yield in sesame. Understanding the genetic basis of seed size and shape is essential for improving the yield of sesame. In this study, F2 and BC1 populations were developed by crossing the Yuzhi 4 and Bengal small-seed (BS) lines for detecting the quantitative trait loci (QTLs) of traits related to seed size and shape. A total of 52 QTLs, including 13 in F2 and 39 in BC1 populations, for seed length (SL), seed width (SW), and length to width ratio (L/W) were identified, explaining phenotypic variations from 3.68 to 21.64%. Of these QTLs, nine stable major QTLs were identified in the two populations. Notably, three major QTLs qSL-LG3-2, qSW-LG3-2, and qSW-LG3-F2 that accounted for 4.94-16.34% of the phenotypic variations were co-localized in a 2.08 Mb interval on chromosome 1 (chr1) with 279 candidate genes. Three stable major QTLs qSL-LG6-2, qLW-LG6, and qLW-LG6-F2 that explained 8.14-33.74% of the phenotypic variations were co-localized in a 3.27 Mb region on chr9 with 398 candidate genes. In addition, the stable major QTL qSL-LG5 was co-localized with minor QTLs qLW-LG5-3 and qSW-LG5 to a 1.82 Mb region on chr3 with 195 candidate genes. Gene annotation, orthologous gene analysis, and sequence analysis indicated that three genes are likely involved in sesame seed development. These results obtained herein provide valuable in-formation for functional gene cloning and improving the seed yield of sesame.
Assuntos
Locos de Características Quantitativas , Sesamum , Locos de Características Quantitativas/genética , Sesamum/genética , Mapeamento Cromossômico/métodos , Fenótipo , Sementes/genéticaRESUMO
Coat color and birth weight, as easily selected traits in cattle, play important roles in cattle breeding. Therefore, we carried out a genome-wide association study on birth weight and coat color to identify loci or potential linkage regions in 233 Simmental × Holstein crossbred beef cattle. The results revealed that nine SNPs were significantly associated with coat color (rs137169378, rs110022687, rs136002689, Hypotrichosis_PMel17, PMEL_1, rs134930689, rs383170073, rs109924971, and rs109146332), and these were in RNF41, ZC3H10, ERBB3, PMEL, and OR10A7 on BTA5. Interestingly, rs137169378, rs110022687, rs136002689, Hypotrichosis_PMel17, and PMEL_1 showed strong linkage disequilibrium (r2 > 0.8) and were significantly associated with coat color. Notably, Hypotrichosis_PMel17 and PMEL_1 were located in the gene PMEL (p = 2.22 × 10-18). Among the five significant SNPs associated with coat color, the birth weight of heterozygous individuals (AB) was greater than that of homozygous individuals (AA). Notably, the birth weight of heterozygous individuals with Hypotrichosis_PMel17 and PMEL_1 genotypes was significantly greater than that of homozygous individuals (0.01 < p < 0.05). Interestingly, the two loci were homozygous in black/white individuals and heterozygous in gray/white individuals, and the birth weight of heterozygous brown/white individuals (43.82 ± 5.25 kg) was greater than that of homozygous individuals (42.58 ± 3.09 kg). The birth weight of calves with the parental color (41.95 ± 3.53 kg) was significantly lower than that of calves with a non-parental color (43.54 ± 4.78 kg) (p < 0.05), and the birth weight of gray/white individuals (49.40 ± 7.11 kg) was the highest. Overall, PMEL appears to be a candidate gene affecting coat color in cattle, and coat color may have a selective effect on birth weight. This study provides a foundation for the breeding of beef cattle through GWAS for coat color and birth weight.
RESUMO
Efficient ovarian follicle development, maturation, and ovulation are critical for egg production performance. Previous research has underscored the importance of messenger RNAs (mRNAs) in regulating development and folliculogenesis in chicken ovarians. However, the molecular mechanism is not fully understood, especially in the late period of the laying cycle. In the present study, ovarian tissues from 80-week-old Hy-Line Brown layers (three with high and three with low rates of egg laying) were collected for transcriptome sequencing. A total of 306 differentially expressed genes (DEGs) were identified in this study, at a false discovery rate (FDR)-corrected P-valueâ <â 0.05 and a log2|fold change| (log2|FC|) ≥1.5. Among these DEGs, stanniocalcin 1 (STC1) was mainly related to cellular processes, single-organism processes, biological regulation, metabolic processes, developmental processes, and reproductive processes. Then, we further investigated the regulation of STC1 during chicken follicle development and found that STC1 inhibited the proliferation and stimulated the apoptosis of follicular granulosa cells (GCs), and decreased the expression of progesterone (P4) and estradiol (E2). Collectively, these results suggest that STC1 plays an important role in chicken follicle development by decreasing GC proliferation and steroidogenesis and stimulating GC apoptosis. This study contributes to the understanding of the reproductive biology of laying hens in the late period of the laying cycle and further lays a foundation for the improvement of egg production in poultry breeding.
The egg production performance of chickens is an essential economic trait that differs significantly between high- and low-egg-laying breeds. In addition to external factors such as feeding, light, and environment, the periodic recruitment of pre-hierarchical follicles and the normal development of hierarchical follicles affect this difference. Thus, we used high-throughput sequencing technology to perform transcriptome analysis of ovarian tissues from 80-wk-old Hy-Line Brown layers with high- and low-egg-laying rates (HH and HL), and an association with the laying performance gene stanniocalcin 1 (STC1) was found. The proliferation and apoptosis of granulosa cells (GCs), as the basic functional cells of ovarian follicles, are highly correlated with the normal development and regression of follicles. Therefore, this study used ovarian follicular GCs cultured in vitro to study the effects of the STC1 gene on the proliferation, apoptosis, and secretion function of GCs and to explore its mechanism of action, laying a foundation for the study of the regulation of the STC1 gene on follicular development.
Assuntos
Galinhas , Glicoproteínas , Animais , Feminino , Galinhas/genética , Apoptose , RNA Mensageiro/genéticaRESUMO
The reproductive performance of chicken breeders has significant economic importance in the poultry industry, and sperm motility is an indicator of reproductive performance. This study performed RNA-seq of the testes of Gushi chicken roosters with high and low sperm motility and identified differentially expressed RNAs involved in sperm motility. RNA-seq analysis showed that 73 and 67 differentially expressed mRNAs were up- and downregulated, and 47 and 56 differentially expressed long non-coding RNAs were up- and downregulated, respectively. The genes related to sperm motility and spermatogenesis included KIFC1, KCNK2, and REC8. Functional enrichment analysis revealed that the pathways related to sperm motility included oxidative phosphorylation and glycine, serine, and threonine metabolism. In addition, the MSTRG.15920.1-REC8-MSTRG.11860.2-VWC2 pathway may regulate sperm motility. This study helped elucidate the molecular genetic mechanism of sperm motility in chicken.
Assuntos
RNA Longo não Codificante , Testículo , Masculino , Animais , Testículo/metabolismo , Motilidade dos Espermatozoides/genética , Galinhas/fisiologia , Perfilação da Expressão Gênica/veterinária , RNA Longo não Codificante/genética , Transcriptoma , Espermatozoides/metabolismoRESUMO
Sesame (Sesamum indicum L.) is an important and ancient oilseed crop. Sesame seed coat color is related to biochemical functions involved in protein and oil metabolism, and antioxidant content. Because of its complication, the genetic basis of sesame seed coat color remains poorly understood. To elucidate the factors affecting the genetic architecture of seed coat color, 366 sesame germplasm lines were evaluated for seed coat color in 12 environments. The genome-wide association studies (GWAS) for three seed coat color space values, best linear unbiased prediction (BLUP) values from a multi-environment trial analysis and principal component scores (PCs) of three seed coat color space values were conducted. GWAS for three seed coat color space values identified a total of 224 significant single nucleotide polymorphisms (SNPs, P < 2.34×10-7), with phenotypic variation explained (PVE) ranging from 1.01% to 22.10%, and 35 significant SNPs were detected in more than 6 environments. Based on BLUP values, 119 significant SNPs were identified, with PVE ranging from 8.83 to 31.98%. Comparing the results of the GWAS using phenotypic data from different environments and the BLUP values, all significant SNPs detected in more than 6 environments were also detected using the BLUP values. GWAS for PCs identified 197 significant SNPs, and 30 were detected in more than 6 environments. GWAS results for PCs were consistent with those for three color space values. Out of 224 significant SNPs, 22 were located in the confidence intervals of previous reported quantitative trait loci (QTLs). Finally, 92 candidate genes were identified in the vicinity of the 4 SNPs that were most significantly associated with sesame seed coat color. The results in this paper will provide new insights into the genetic basis of sesame seed coat color, and should be useful for molecular breeding in sesame.
Assuntos
Pigmentação/genética , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Sementes/genética , Sesamum/genética , Estudo de Associação Genômica AmplaRESUMO
The excessive deposition of abdominal fat has become an important factor in restricting the production efficiency of chickens, so reducing abdominal fat deposition is important for improving growth rate. It has been proven that miRNAs play an important role in regulating many physiological processes of organisms. In this study, we constructed a model of adipogenesis by isolating preadipocytes (Ab-Pre) derived from abdominal adipose tissue and differentiated adipocytes (Ab-Ad) in vitro. Deep sequencing of miRNAs and mRNAs expressed in Ab-Pre and Ab-Ad groups was conducted to explore the effect of miRNAs and mRNAs on fat deposition. We identified 80 differentially expressed miRNAs (DEMs) candidates, 58 of which were up-regulated and 22 down-regulated. Furthermore, six miRNAs and six mRNAs were verified by qRT-PCR, and the results showed that the expression of the DEMs and differentially expressed genes (DEGs) in the two groups was consistent with our sequencing results. When target genes of miRNA were combined with mRNA transcriptome data, a total of 891 intersection genes were obtained, we predicted the signal pathways of cross genes enrichment to the MAPK signal pathway, insulin signal pathway, fatty acid metabolism, and ECM-receptor interaction. Meanwhile, we constructed miRNA and negatively correlated mRNA target networks, including 12 miRNA-mRNAs pairs, which showed a strong association with the abdominal adipocyte differentiation (miR-214-ACSBG2, NFKB2, CAMK2A, ACLY, CCND3, PLK3, ITGB2; miR-148a-5p-ROCK2; miR-10a-5p-ELOVL5; miR-146b-5p-LAMA4; miR-6615-5p-FLNB; miR-1774-COL6A1). Overall, these findings provide a background for further research on lipid metabolism. Thus, we can better understand the molecular genetic mechanism of chicken abdominal fat deposition.
RESUMO
A good genetic map can provide the framework for quantitative trait loci (QTL) analysis, map-based gene cloning, and genome sequence assembling. The main objectives of this study were to develop a high-density genetic linkage map using specific length amplified fragment sequencing (SLAF-seq) in sesame. In the result, a high-resolution genetic map with 9,378 SLAF markers and 13 linkage groups (LGs) was constructed. The map spanned a total genetic distance of 1,974.23 cM, and the mean LG length was 151.86 cM, with an average genetic distance of 0.22 cM between adjacent markers. Based on the newly constructed genetic map, genes for basal branching habit (SiBH) and flowers per leaf axil (SiFA) were mapped to LG5 and LG11, respectively.