Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
Proc Natl Acad Sci U S A ; 111(46): 16286-91, 2014 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-25368196

RESUMO

Hydrogenases interconvert H2 and protons at high rates and with high energy efficiencies, providing inspiration for the development of molecular catalysts. Studies designed to determine how the protein scaffold can influence a catalytically active site have led to the synthesis of amino acid derivatives of [Ni(P2(R)N2(R'))2](2+) complexes, [Ni(P2(Cy)N2(Amino acid))2](2+) (CyAA). It is shown that these CyAA derivatives can catalyze fully reversible H2 production/oxidation at rates approaching those of hydrogenase enzymes. The reversibility is achieved in acidic aqueous solutions (pH = 0-6), 1 atm 25% H2/Ar, and elevated temperatures (tested from 298 to 348 K) for the glycine (CyGly), arginine (CyArg), and arginine methyl ester (CyArgOMe) derivatives. As expected for a reversible process, the catalytic activity is dependent upon H2 and proton concentrations. CyArg is significantly faster in both directions (∼300 s(-1) H2 production and 20 s(-1) H2 oxidation; pH = 1, 348 K, 1 atm 25% H2/Ar) than the other two derivatives. The slower turnover frequencies for CyArgOMe (35 s(-1) production and 7 s(-1) oxidation under the same conditions) compared with CyArg suggests an important role for the COOH group during catalysis. That CyArg is faster than CyGly (3 s(-1) production and 4 s(-1) oxidation) suggests that the additional structural features imparted by the guanidinium groups facilitate fast and reversible H2 addition/release. These observations demonstrate that outer coordination sphere amino acids work in synergy with the active site and can play an important role for synthetic molecular electrocatalysts, as has been observed for the protein scaffold of redox active enzymes.


Assuntos
Arginina/análogos & derivados , Arginina/química , Complexos de Coordenação/química , Hidrogênio/química , Níquel/química , Catálise , Técnicas Eletroquímicas , Glicina/química , Temperatura Alta , Concentração de Íons de Hidrogênio , Estrutura Molecular , Ressonância Magnética Nuclear Biomolecular , Oxirredução , Pressão
2.
Acc Chem Res ; 48(2): 248-55, 2015 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-25574854

RESUMO

CONSPECTUS: Rational design of molecular catalysts requires a systematic approach to designing ligands with specific functionality and precisely tailored electronic and steric properties. It then becomes possible to devise computer protocols to design catalysts by computer. In this Account, we first review how thermodynamic properties such as redox potentials (E°), acidity constants (pKa), and hydride donor abilities (ΔGH(-)) form the basis for a framework for the systematic design of molecular catalysts for reactions that are critical for a secure energy future. We illustrate this for hydrogen evolution and oxidation, oxygen reduction, and CO conversion, and we give references to other instances where it has been successfully applied. The framework is amenable to quantum-chemical calculations and conducive to predictions by computer. We review how density functional theory allows the determination and prediction of these thermodynamic properties within an accuracy relevant to experimentalists (∼0.06 eV for redox potentials, ∼1 pKa unit for pKa values, and 1-2 kcal/mol for hydricities). Computation yielded correlations among thermodynamic properties as they reflect the electron population in the d shell of the metal center, thus substantiating empirical correlations used by experimentalists. These correlations point to the key role of redox potentials and other properties (pKa of the parent aminium for the proton-relay-based catalysts designed in our laboratory) that are easily accessible experimentally or computationally in reducing the parameter space for design. These properties suffice to fully determine free energies maps and profiles associated with catalytic cycles, i.e., the relative energies of intermediates. Their prediction puts us in a position to distinguish a priori between desirable and undesirable pathways and mechanisms. Efficient catalysts have flat free energy profiles that avoid high activation barriers due to low- and high-energy intermediates. The criterion of a flat energy profile can be mathematically resolved in a functional in the reduced parameter space that can be efficaciously calculated by means of the correlation expressions. Optimization of the functional permits the prediction by computer of design points for optimum catalysts. Specifically, the optimization yields the values of the thermodynamic properties for efficient (high rate and low overpotential) catalysts. We are on the verge of design of molecular electrocatalysts by computer. Future efforts must focus on identifying actual ligands that possess these properties. We believe that this can also be achieved through computation, using Taft-like relationships linking molecular composition and structure with electron-donating ability and steric effects. We note also that the approach adopted here of using free energy maps to decipher catalytic pathways and mechanisms does not account for kinetic barriers associated with elementary steps along the catalytic pathway, which may make thermodynamically accessible intermediates kinetically inaccessible. Such an extension of the approach will require further computations that, however, can take advantage of Polanyi-like linear free energy relationships linking activation barriers and reaction free energies.

3.
Proc Natl Acad Sci U S A ; 109(39): 15634-9, 2012 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-22685211

RESUMO

The electrocatalytic reduction of protons to H(2) by [Ni((P(Ph)(2)N(C6H4-hex))(2)(2)]((BF(4))(2) (where P(Ph)(2)N(C6H4-hex)(2) = 1,5-di(4-n-hexylphenyl)-3,7-diphenyl-1,5-diaza-3,7-diphosphacyclooctane) in the highly acidic ionic liquid dibutylformamidium bis(trifluoromethanesulfonyl)amide shows a strong dependence on added water. A turnover frequency of 43,000-53,000 s(-1) has been measured for hydrogen production at 25 °C when the mole fraction of water (χ(H(2)O)) is 0.72. The same catalyst in acetonitrile with added dimethylformamidium trifluoromethanesulfonate and water has a turnover frequency of 720 s(-1). Thus, the use of an ionic liquid/aqueous solution enhances the observed catalytic rate by more than a factor of 50, compared to a similar acid in a traditional organic solvent. Complexes [Ni((P(Ph)(2)N(C6H4X))(2)(2)]((BF(4))(2) (X = H, OMe,CH(2)P(O)(OEt)(2), Br) are also catalysts in the ionic liquid/water mixture, and the observed catalytic rates correlate with the hydrophobicity of X.


Assuntos
Compostos Ferrosos/química , Níquel/química , Prótons , Água/química , Catálise , Eletroquímica/métodos
4.
Biochim Biophys Acta ; 1827(8-9): 1123-39, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23313415

RESUMO

This review discusses the development of molecular electrocatalysts for H2 production and oxidation based on nickel. A modular approach is used in which the structure of the catalyst is divided into first, second, and outer coordination spheres. The first coordination sphere consists of the ligands bound directly to the metal center, and this coordination sphere can be used to control such factors as the presence or absence of vacant coordination sites, redox potentials, hydride donor abilities and other important thermodynamic parameters. The second coordination sphere includes functional groups such as pendent acids or bases that can interact with bound substrates such as H2 molecules and hydride ligands, but that do not form strong bonds with the metal center. These functional groups can play diverse roles such as assisting the heterolytic cleavage of H2, controlling intra- and intermolecular proton transfer reactions, and providing a physical pathway for coupling proton and electron transfer reactions. By controlling both the hydride donor ability of the catalysts using the first coordination sphere and the proton donor abilities of the functional groups in the second coordination sphere, catalysts can be designed that are biased toward H2 production, oxidation, or bidirectional (catalyzing both H2 oxidation and production). The outer coordination sphere is defined as that portion of the catalytic system that is beyond the second coordination sphere. This coordination sphere can assist in the delivery of protons and electrons to and from the catalytically active site, thereby adding another important avenue for controlling catalytic activity. Many features of these simple catalytic systems are good models for enzymes, and these simple systems provide insights into enzyme function and reactivity that may be difficult to probe in enzymes. This article is part of a Special Issue entitled: Metals in Bioenergetics and Biomimetics Systems.


Assuntos
Hidrogênio/química , Níquel/química , Catálise , Técnicas Eletroquímicas , Modelos Moleculares , Oxirredução
5.
Inorg Chem ; 53(8): 3935-60, 2014 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-24555579

RESUMO

Molecular electrocatalysts can play an important role in energy storage and utilization reactions needed for intermittent renewable energy sources. This manuscript describes three general themes that our laboratories have found useful in the development of molecular electrocatalysts for reduction of CO2 to CO and for H2 oxidation and production. The first theme involves a conceptual partitioning of catalysts into first, second, and outer coordination spheres. This is illustrated with the design of electrocatalysts for CO2 reduction to CO using first and second coordination spheres and for H2 production catalysts using all three coordination spheres. The second theme focuses on the development of thermodynamic models that can be used to design catalysts to avoid high- and low-energy intermediates. In this research, new approaches to the measurement of thermodynamic hydride donor and acceptor abilities of transition-metal complexes were developed. Combining this information with other thermodynamic information such as pKa values and redox potentials led to more complete thermodynamic descriptions of transition-metal hydride, dihydride, and related species. Relationships extracted from this information were then used to develop models that are powerful tools for predicting and understanding the relative free energies of intermediates in catalytic reactions. The third theme is control of proton movement during electrochemical fuel generation and utilization reactions. This research involves the incorporation of pendant amines in the second coordination sphere that can facilitate H-H bond heterolysis and heteroformation, intra- and intermolecular proton-transfer steps, and coupling of proton- and electron-transfer steps. Studies also indicate an important role for the outer coordination sphere in the delivery of protons to the second coordination sphere. Understanding these proton-transfer reactions and their associated energy barriers is key to the design of faster and more efficient molecular electrocatalysts for energy storage.

6.
Angew Chem Int Ed Engl ; 53(21): 5300-4, 2014 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-24757087

RESUMO

Hydrogenase enzymes in nature use hydrogen as a fuel, but the heterolytic cleavage of H-H bonds cannot be readily observed in enzymes. Here we show that an iron complex with pendant amines in the diphosphine ligand cleaves hydrogen heterolytically. The product has a strong Fe-H⋅⋅⋅H-N dihydrogen bond. The structure was determined by single-crystal neutron diffraction, and has a remarkably short H⋅⋅⋅H distance of 1.489(10) Šbetween the protic N-H(δ+) and hydridic Fe-H(δ-) part. The structural data for [Cp(C5F4N)FeH(P(tBu)2N(tBu)2H)](+) provide a glimpse of how the H-H bond is oxidized or generated in hydrogenase enzymes. These results now provide a full picture for the first time, illustrating structures and reactivity of the dihydrogen complex and the product of the heterolytic cleavage of H2 in a functional model of the active site of the [FeFe] hydrogenase enzyme.


Assuntos
Hidrogênio/química , Hidrogenase/metabolismo , Proteínas Ferro-Enxofre/metabolismo , Ferro/química , Biocatálise , Complexos de Coordenação/química , Cristalografia por Raios X , Técnicas Eletroquímicas , Hidrogenase/química , Proteínas Ferro-Enxofre/química , Modelos Moleculares , Conformação Molecular , Difração de Nêutrons , Nitrogênio/química , Oxirredução
7.
J Am Chem Soc ; 135(32): 11736-9, 2013 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-23889300

RESUMO

Heterolytic cleavage of dihydrogen into a proton and a hydride ion is a fundamentally important step in many reactions, including the oxidation of hydrogen by hydrogenase enzymes and ionic hydrogenation of organic compounds. We report the facile, reversible heterolytic cleavage of H2 in a manganese complex bearing a pendant amine, leading to the formation of a manganese hydride and a protonated amine that undergo H(+)/H(-) exchange at an estimated rate of >10(7) s(-1) at 25 °C.

8.
J Am Chem Soc ; 135(26): 9700-12, 2013 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-23631473

RESUMO

A nickel bis(diphosphine) complex containing pendant amines in the second coordination sphere, [Ni(P(Cy)2N(t-Bu)2)2](BF4)2 (P(Cy)2N(t-Bu)2 = 1,5-di(tert-butyl)-3,7-dicyclohexyl-1,5-diaza-3,7-diphosphacyclooctane), is an electrocatalyst for hydrogen oxidation. The addition of hydrogen to the Ni(II) complex gives three isomers of the doubly protonated Ni(0) complex [Ni(P(Cy)2N(t-Bu)2H)2](BF4)2. Using the pKa values and Ni(II/I) and Ni(I/0) redox potentials in a thermochemical cycle, the free energy of hydrogen addition to [Ni(P(Cy)2N(t-Bu)2)2](2+) was determined to be -7.9 kcal mol(-1). The catalytic rate observed in dry acetonitrile for the oxidation of H2 depends on base size, with larger bases (NEt3, t-BuNH2) resulting in much slower catalysis than n-BuNH2. The addition of water accelerates the rate of catalysis by facilitating deprotonation of the hydrogen addition product before oxidation, especially for the larger bases NEt3 and t-BuNH2. This catalytic pathway, where deprotonation occurs prior to oxidation, leads to an overpotential that is 0.38 V lower compared to the pathway where oxidation precedes proton movement. Under the optimal conditions of 1.0 atm H2 using n-BuNH2 as a base and with added water, a turnover frequency of 58 s(-1) is observed at 23 °C.


Assuntos
Aminas/química , Complexos de Coordenação/química , Hidrogênio/química , Níquel/química , Catálise , Técnicas Eletroquímicas , Modelos Moleculares , Conformação Molecular , Oxirredução
9.
Inorg Chem ; 52(24): 14391-403, 2013 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-24261463

RESUMO

Two cobalt(tetraphosphine) complexes [Co(P(nC-PPh2)2N(Ph)2)(CH3CN)](BF4)2 with a tetradentate phosphine ligand (P(nC-PPh2)2N(Ph)2 = 1,5-diphenyl-3,7-bis((diphenylphosphino)alkyl)-1,5-diaza-3,7-diphosphacyclooctane; alkyl = (CH2)2, n = 2 (L2); (CH2)3, n = 3 (L3)) have been studied for electrocatalytic hydrogen production using 1:1 [(DMF)H](+):DMF. A turnover frequency (TOF) of 980 s(-1) with an overpotential at Ecat/2 of 1210 mV was measured for [Co(II)(L2)(CH3CN)](2+), and a TOF of 980 s(-1) with an overpotential at Ecat/2 of 930 mV was measured for [Co(II)(L3)(CH3CN)](2+). Addition of water increases the TOF of [Co(II)(L2)(CH3CN)](2+) to 18,000 s(-1). The catalytic wave for each of these complexes occurs at the reduction potential of the corresponding HCo(III) complex. Comprehensive thermochemical studies of [Co(II)(L2)(CH3CN)](2+) and [Co(II)(L3)(CH3CN)](2+) and species derived from them by addition/removal of protons/electrons were carried out using values measured experimentally and calculated using density functional theory (DFT). Notably, HCo(I)(L2) and HCo(I)(L3) were found to be remarkably strong hydride donors, with HCo(I)(L2) being a better hydride donor than BH4(-). Mechanistic studies of these catalysts reveal that H2 formation can occur by protonation of a HCo(II) intermediate, and that the pendant amines of these complexes facilitate proton delivery to the cobalt center. The rate-limiting step for catalysis is a net intramolecular isomerization of the protonated pendant amine from the nonproductive exoisomer to the productive endo isomer.

10.
Inorg Chem ; 52(17): 9975-88, 2013 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-23945020

RESUMO

Two new tetraphosphine ligands, P(nC-PPh2)2N(Ph)2 (1,5-diphenyl-3,7-bis((diphenylphosphino)alkyl)-1,5-diaza-3,7-diphosphacyclooctane; alkyl = (CH2)2, n = 2 (L2); (CH2)3, n = 3 (L3)), have been synthesized. Coordination of these ligands to cobalt affords the complexes [Co(II)(L2)(CH3CN)](2+) and [Co(II)(L3)(CH3CN)](2+), which are reduced by KC8 to afford [Co(I)(L2)(CH3CN)](+) and [Co(I)(L3)(CH3CN)](+). Protonation of the Co(I) complexes affords [HCo(III)(L2)(CH3CN)](2+) and [HCo(III)(L3)(CH3CN)](2+). The cyclic voltammetry of [HCo(III)(L2)(CH3CN)](2+), analyzed using digital simulation, is consistent with an ErCrEr reduction mechanism involving reversible acetonitrile dissociation from [HCo(II)(L2)(CH3CN)](+) and resulting in formation of HCo(I)(L2). Reduction of HCo(III) also results in cleavage of the H-Co bond from HCo(II) or HCo(I), leading to formation of the Co(I) complex [Co(I)(L2)(CH3CN)](+). Under voltammetric conditions, the reduced cobalt hydride reacts with a protic solvent impurity to generate H2 in a monometallic process involving two electrons per cobalt. In contrast, under bulk electrolysis conditions, H2 formation requires only one reducing equivalent per [HCo(III)(L2)(CH3CN)](2+), indicating a bimetallic route wherein two cobalt hydride complexes react to form 2 equiv of [Co(I)(L2)(CH3CN)](+) and 1 equiv of H2. These results indicate that both HCo(II) and HCo(I) can be formed under electrocatalytic conditions and should be considered as potential catalytic intermediates.

11.
J Am Chem Soc ; 134(14): 6257-72, 2012 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-22394350

RESUMO

The iron complexes CpFe(P(Ph)(2)N(Bn)(2))Cl (1-Cl), CpFe(P(Ph)(2)N(Ph)(2))Cl (2-Cl), and CpFe(P(Ph)(2)C(5))Cl (3-Cl)(where P(Ph)(2)N(Bn)(2) is 1,5-dibenzyl-1,5-diaza-3,7-diphenyl-3,7-diphosphacyclooctane, P(Ph)(2)N(Ph)(2) is 1,3,5,7-tetraphenyl-1,5-diaza-3,7-diphosphacyclooctane, and P(Ph)(2)C(5) is 1,4-diphenyl-1,4-diphosphacycloheptane) have been synthesized and characterized by NMR spectroscopy, electrochemical studies, and X-ray diffraction. These chloride derivatives are readily converted to the corresponding hydride complexes [CpFe(P(Ph)(2)N(Bn)(2))H (1-H), CpFe(P(Ph)(2)N(Ph)(2))H (2-H), CpFe(P(Ph)(2)C(5))H (3-H)] and H(2) complexes [CpFe(P(Ph)(2)N(Bn)(2))(H(2))]BAr(F)(4), [1-H(2)]BAr(F)(4), (where BAr(F)(4) is B[(3,5-(CF(3))(2)C(6)H(3))(4)](-)), [CpFe(P(Ph)(2)N(Ph)(2))(H(2))]BAr(F)(4), [2-H(2)]BAr(F)(4), and [CpFe(P(Ph)(2)C(5))(H(2))]BAr(F)(4), [3-H(2)]BAr(F)(4), as well as [CpFe(P(Ph)(2)N(Bn)(2))(CO)]BAr(F)(4), [1-CO]Cl. Structural studies are reported for [1-H(2)]BAr(F)(4), 1-H, 2-H, and [1-CO]Cl. The conformations adopted by the chelate rings of the P(Ph)(2)N(Bn)(2) ligand in the different complexes are determined by attractive or repulsive interactions between the sixth ligand of these pseudo-octahedral complexes and the pendant N atom of the ring adjacent to the sixth ligand. An example of an attractive interaction is the observation that the distance between the N atom of the pendant amine and the C atom of the coordinated CO ligand for [1-CO]BAr(F)(4) is 2.848 Å, considerably shorter than the sum of the van der Waals radii of N and C atoms. Studies of H/D exchange by the complexes [1-H(2)](+), [2-H(2)](+), and [3-H(2)](+) carried out using H(2) and D(2) indicate that the relatively rapid H/D exchange observed for [1-H(2)](+) and [2-H(2)](+) compared to [3-H(2)](+) is consistent with intramolecular heterolytic cleavage of H(2) mediated by the pendant amine. Computational studies indicate a low barrier for heterolytic cleavage of H(2). These mononuclear Fe(II) dihydrogen complexes containing pendant amines in the ligands mimic crucial features of the distal Fe site of the active site of the [FeFe]-hydrogenase required for H-H bond formation and cleavage.


Assuntos
Eletroquímica/métodos , Hidrogênio/química , Hidrogenase/química , Ferro/química , Fosfinas/química , Benzeno/química , Elétrons , Compostos Ferrosos/química , Flúor/química , Ligantes , Espectroscopia de Ressonância Magnética/métodos , Modelos Químicos , Modelos Moleculares , Conformação Molecular , Estrutura Molecular , Oxirredução
12.
J Am Chem Soc ; 134(47): 19409-24, 2012 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-23072436

RESUMO

To examine the role of proton delivery and removal in the electrocatalytic oxidation and production of hydrogen by [Ni(P(R)(2)N(R')(2))(2)](2+) (where P(R)(2)N(R')(2) is 1,5-R'-3,7-R-1,5-diaza-3,7-diphosphacyclooctane), we report experimental and theoretical studies of the intermolecular proton exchange reactions underlying the isomerization of [Ni(P(Cy)(2)N(Bn)(2)H)(2)](2+) (Cy = cyclohexyl, Bn = benzyl) species formed during the oxidation of H(2) by [Ni(II)(P(Cy)(2)N(Bn)(2))(2)](2+) or the protonation of [Ni(0)(P(Cy)(2)N(Bn)(2))(2)]. Three protonated isomers are formed (endo/endo, endo/exo, or exo/exo), which differ in the position of the N-H bond's with respect to nickel. The endo/endo isomer is the most productive isomer due to the two protons being sufficiently close to the nickel to proceed readily to the transition state to form/cleave H(2). Therefore, the rate of isomerization of the endo/exo or exo/exo isomers to generate the endo/endo isomer can have an important impact on catalytic rates. We have found that the rate of isomerization is limited by proton removal from, or delivery to, the complex. In particular, the endo position is more sterically hindered than the exo position; therefore, protonation exo to the metal is kinetically favored over endo protonation, which leads to less catalytically productive pathways. In hydrogen oxidation, deprotonation of the sterically hindered endo position by an external base may lead to slow catalytic turnover. For hydrogen production catalysts, the limited accessibility of the endo position can result in the preferential formation of the exo protonated isomers, which must undergo one or more isomerization steps to generate the catalytically productive endo protonated isomer. The results of these studies highlight the importance of precise proton delivery, and the mechanistic details described herein will be used to guide future catalyst design.


Assuntos
Hidrogênio/química , Níquel/química , Compostos Organometálicos/química , Prótons , Catálise , Cinética , Modelos Moleculares , Conformação Molecular , Oxirredução
13.
Chemistry ; 18(21): 6493-506, 2012 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-22532421

RESUMO

We present the results of a comprehensive theoretical investigation of the role of pendant amine ligands in the oxidation of H(2) and formation of H(2) by [Ni(P(R)(2)N(R')(2))(2)](2+) electrocatalysts (P(R)(2)N(R')(2) is the 1,5-R'-3,7-R derivative of 1,5-diaza-3,7-diphosphacyclooctane, in which R and R' are aryl or alkyl groups). We focus our analysis on the thermal steps of the catalytic cycle, as they are known to be rate-determining for both H(2) oxidation and production. We find that the presence of pendant amine functional groups greatly facilitates the heterolytic H(2) bond cleavage, resulting in a protonated amine and a Ni hydride. Only one single positioned pendant amine is required to serve this function. The pendant amine can also effectively shuttle protons to the active site, making the redistribution of protons and the H(2) evolution a very facile process. An important requirement for the overall catalytic process is the positioning of at least one amine in close proximity to the metal center. Indeed, only protonation of the pendant amines on the metal center side (endo position) leads to catalytically active intermediates, whereas protonation on the opposite side of the metal center (exo position) leads to a variety of isomers, which are detrimental to catalysis.

14.
J Am Chem Soc ; 133(37): 14604-13, 2011 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-21780811

RESUMO

The free energies interconnecting nine tungsten complexes have been determined from chemical equilibria and electrochemical data in MeCN solution (T = 22 °C). Homolytic W-H bond dissociation free energies are 59.3(3) kcal mol(-1) for CpW(CO)(2)(IMes)H and 59(1) kcal mol(-1) for the dihydride [CpW(CO)(2)(IMes)(H)(2)](+) (where IMes = 1,3-bis(2,4,6-trimethylphenyl)imidazol-2-ylidene), indicating that the bonds are the same within experimental uncertainty for the neutral hydride and the cationic dihydride. For the radical cation, [CpW(CO)(2)(IMes)H](•+), W-H bond homolysis to generate the 16-electron cation [CpW(CO)(2)(IMes)](+) is followed by MeCN uptake, with free energies for these steps being 51(1) and -16.9(5) kcal mol(-1), respectively. Based on these two steps, the free energy change for the net conversion of [CpW(CO)(2)(IMes)H](•+) to [CpW(CO)(2)(IMes)(MeCN)](+) in MeCN is 34(1) kcal mol(-1), indicating a much lower bond strength for the 17-electron radical cation of the metal hydride compared to the 18-electron hydride or dihydride. The pK(a) of CpW(CO)(2)(IMes)H in MeCN was determined to be 31.9(1), significantly higher than the 26.6 reported for the related phosphine complex, CpW(CO)(2)(PMe(3))H. This difference is attributed to the electron donor strength of IMes greatly exceeding that of PMe(3). The pK(a) values for [CpW(CO)(2)(IMes)H](•+) and [CpW(CO)(2)(IMes)(H)(2)](+) were determined to be 6.3(5) and 6.3(8), much closer to the pK(a) values reported for the PMe(3) analogues. The free energy of hydride abstraction from CpW(CO)(2)(IMes)H is 74(1) kcal mol(-1), and the resultant [CpW(CO)(2)(IMes)](+) cation is significantly stabilized by binding MeCN to form [CpW(CO)(2)(IMes)(MeCN)](+), giving an effective hydride donor ability of 57(1) kcal mol(-1) in MeCN. Electrochemical oxidation of [CpW(CO)(2)(IMes)](-) is fully reversible at all observed scan rates in cyclic voltammetry experiments (E° = -1.65 V vs Cp(2)Fe(+/0) in MeCN), whereas CpW(CO)(2)(IMes)H is reversibly oxidized (E° = -0.13(3) V) only at high scan rates (800 V s(-1)). For [CpW(CO)(2)(IMes)(MeCN)](+), high-pressure NMR experiments provide an estimate of ΔG° = 10.3(4) kcal mol(-1) for the displacement of MeCN by H(2) to give [CpW(CO)(2)(IMes)(H)(2)](+).

15.
J Am Chem Soc ; 133(36): 14301-12, 2011 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-21595478

RESUMO

Proton transport is ubiquitous in chemical and biological processes, including the reduction of dioxygen to water, the reduction of CO(2) to formate, and the production/oxidation of hydrogen. In this work we describe intramolecular proton transfer between Ni and positioned pendant amines for the hydrogen oxidation electrocatalyst [Ni(P(Cy)(2)N(Bn)(2)H)(2)](2+) (P(Cy)(2)N(Bn)(2) = 1,5-dibenzyl-3,7-dicyclohexyl-1,5-diaza-3,7-diphosphacyclooctane). Rate constants are determined by variable-temperature one-dimensional NMR techniques and two-dimensional EXSY experiments. Computational studies provide insight into the details of the proton movement and energetics of these complexes. Intramolecular proton exchange processes are observed for two of the three experimentally observable isomers of the doubly protonated Ni(0) complex, [Ni(P(Cy)(2)N(Bn)(2)H)(2)](2+), which have N-H bonds but no Ni-H bonds. For these two isomers, with pendant amines positioned endo to the Ni, the rate constants for proton exchange range from 10(4) to 10(5) s(-1) at 25 °C, depending on isomer and solvent. No exchange is observed for protons on pendant amines positioned exo to the Ni. Analysis of the exchange as a function of temperature provides a barrier for proton exchange of ΔG(‡) = 11-12 kcal/mol for both isomers, with little dependence on solvent. Density functional theory calculations and molecular dynamics simulations support the experimental observations, suggesting metal-mediated intramolecular proton transfers between nitrogen atoms, with chair-to-boat isomerizations as the rate-limiting steps. Because of the fast rate of proton movement, this catalyst may be considered a metal center surrounded by a cloud of exchanging protons. The high intramolecular proton mobility provides information directly pertinent to the ability of pendant amines to accelerate proton transfers during catalysis of hydrogen oxidation. These results may also have broader implications for proton movement in homogeneous catalysts and enzymes in general, with specific implications for the proton channel in the Ni-Fe hydrogenase enzyme.


Assuntos
Aminas/química , Hidrogênio/química , Níquel/química , Prótons , Catálise , Espectroscopia de Ressonância Magnética , Oxirredução
16.
J Am Chem Soc ; 133(15): 5861-72, 2011 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-21438562

RESUMO

A series of mononuclear nickel(II) bis(diphosphine) complexes [Ni(P(Ph)(2)N(C6H4X)(2))(2)](BF(4))(2) (P(Ph)(2)N(C6H4X)(2) = 1,5-di(para-X-phenyl)-3,7-diphenyl-1,5-diaza-3,7-diphosphacyclooctane; X = OMe, Me, CH(2)P(O)(OEt)(2), Br, and CF(3)) have been synthesized and characterized. X-ray diffraction studies reveal that [Ni(P(Ph)(2)N(C6H4Me)(2))(2)](BF(4))(2) and [Ni(P(Ph)(2)N(C6H4OMe)(2))(2)](BF(4))(2) are tetracoordinate with distorted square planar geometries. The Ni(II/I) and Ni(I/0) redox couples of each complex are electrochemically reversible in acetonitrile with potentials that are increasingly cathodic as the electron-donating character of X is increased. Each of these complexes is an efficient electrocatalyst for hydrogen production at the potential of the Ni(II/I) couple. The catalytic rates generally increase as the electron-donating character of X is decreased, and this electronic effect results in the favorable but unusual situation of obtaining higher catalytic rates as overpotentials are decreased. Catalytic studies using acids with a range of pK(a) values reveal that turnover frequencies do not correlate with substrate acid pK(a) values but are highly dependent on the acid structure, with this effect being related to substrate size. Addition of water is shown to dramatically increase catalytic rates for all catalysts. With [Ni(P(Ph)(2)N(C6H4CH2P(O)(OEt)2)(2))(2)](BF(4))(2) using [(DMF)H](+)OTf(-) as the acid and with added water, a turnover frequency of 1850 s(-1) was obtained.

17.
J Am Chem Soc ; 133(32): 12767-79, 2011 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-21692477

RESUMO

[Ni(P(R)(2)N(R')(2))(2)(CH(3)CN)](2+) complexes with R = Ph, R' = 4-MeOPh or R = Cy, R' = Ph , and a mixed-ligand [Ni(P(R)(2)N(R')(2))(P(R''(2))N(R'(2)))(CH(3)CN)](2+) with R = Cy, R' = Ph, R'' = Ph, have been synthesized and characterized by single-crystal X-ray crystallography. These and previously reported complexes are shown to be electrocatalysts for the oxidation of formate in solution to produce CO(2), protons, and electrons, with rates that are first-order in catalyst and formate at formate concentrations below ∼0.04 M (34 equiv). At concentrations above ∼0.06 M formate (52 equiv), catalytic rates become nearly independent of formate concentration. For the catalysts studied, maximum observed turnover frequencies vary from <1.1 to 15.8 s(-1) at room temperature, which are the highest rates yet reported for formate oxidation by homogeneous catalysts. These catalysts are the only base-metal electrocatalysts as well as the only homogeneous electrocatalysts reported to date for the oxidation of formate. An acetate complex demonstrating an η(1)-OC(O)CH(3) binding mode to nickel has also been synthesized and characterized by single-crystal X-ray crystallography. Based on this structure and the electrochemical and spectroscopic data, a mechanistic scheme for electrocatalytic formate oxidation is proposed which involves formate binding followed by a rate-limiting proton and two-electron transfer step accompanied by CO(2) liberation. The pendant amines have been demonstrated to be essential for electrocatalysis, as no activity toward formate oxidation was observed for the similar [Ni(depe)(2)](2+) (depe = 1,2-bis(diethylphosphino)ethane) complex.

18.
J Am Chem Soc ; 133(37): 14593-603, 2011 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-21786753

RESUMO

A series consisting of a tungsten anion, radical, and cation, supported by the N-heterocyclic carbene 1,3-bis(2,4,6-trimethylphenyl)imidazol-2-ylidene (IMes) and spanning formal oxidation states W(0), W(I), and W(II), has been synthesized, isolated, and characterized. Reaction of the hydride CpW(CO)(2)(IMes)H with KH and 18-crown-6 gives the tungsten anion [CpW(CO)(2)(IMes)](-)[K(18-crown-6)](+). Electrochemical oxidation of [CpW(CO)(2)(IMes)](-) in MeCN (0.2 M (n)Bu(4)N(+)PF(6)(-)) is fully reversible (E(1/2) = -1.65 V vs Cp(2)Fe(+•/0)) at all scan rates, indicating that CpW(CO)(2)(IMes)(•) is a persistent radical. Hydride transfer from CpW(CO)(2)(IMes)H to Ph(3)C(+)PF(6)(-) in MeCN affords [cis-CpW(CO)(2)(IMes)(MeCN)](+)PF(6)(-). Comproportionation of [CpW(CO)(2)(IMes)](-) with [CpW(CO)(2)(IMes)(MeCN)](+) gives the 17-electron tungsten radical CpW(CO)(2)(IMes)(•). This complex shows paramagnetically shifted resonances in the (1)H NMR spectrum and has been characterized by IR spectroscopy, low-temperature EPR spectroscopy, and X-ray diffraction. CpW(CO)(2)(IMes)(•) is stable with respect to disproportionation and dimerization. NMR studies of degenerate electron transfer between CpW(CO)(2)(IMes)(•) and [CpW(CO)(2)(IMes)](-) are reported. DFT calculations were carried out on CpW(CO)(2)(IMes)H, as well as on related complexes bearing NHC ligands with N,N' substituents Me (CpW(CO)(2)(IMe)H) or H (CpW(CO)(2)(IH)H) to compare to the experimentally studied IMes complexes with mesityl substituents. These calculations reveal that W-H homolytic bond dissociation energies (BDEs) decrease with increasing steric bulk of the NHC ligand, from 67 to 64 to 63 kcal mol(-1) for CpW(CO)(2)(IH)H, CpW(CO)(2)(IMe)H, and CpW(CO)(2)(IMes)H, respectively. The calculated spin density at W for CpW(CO)(2)(IMes)(•) is 0.63. The W radicals CpW(CO)(2)(IMe)(•) and CpW(CO)(2)(IH)(•) are calculated to form weak W-W bonds. The weakly bonded complexes [CpW(CO)(2)(IMe)](2) and [CpW(CO)(2)(IH)](2) are predicted to have W-W BDEs of 6 and 18 kcal mol(-1), respectively, and to dissociate readily to the W-centered radicals CpW(CO)(2)(IMe)(•) and CpW(CO)(2)(IH)(•).

19.
Inorg Chem ; 50(9): 4073-85, 2011 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-21456543

RESUMO

Four new cyclic 1,5-diaza-3,7-diphosphacyclooctane ligands have been prepared and used to synthesize [Ni(P(Ph)(2)N(R)(2))(2)](2+) complexes in which R is a mono- or dipeptide. These complexes represent a first step in the development of an outer-coordination sphere for this class of complexes that can mimic the outer-coordination sphere of the active sites of hydrogenase enzymes. Importantly, these complexes retain the electrocatalytic activity of the parent [Ni(P(Ph)(2)N(Ph)(2))(2)](2+) complex in an acetonitrile solution with turnover frequencies for hydrogen production ranging from 14 to 25 s(-1) in the presence of p-cyanoanilinium trifluoromethanesulfonate and from 135 to 1000 s(-1) in the presence of protonated dimethylformamide, with moderately low overpotentials, ∼0.3 V. The addition of small amounts of water results in rate increases of 2-7 times. Unlike the parent complex, these complexes demonstrate dynamic structural transformations in solution. These results establish a building block from which larger peptide scaffolding can be added to allow the [Ni(P(R)(2)N(R')(2))(2)](2+) molecular catalytic core to begin to mimic the multifunctional outer-coordination sphere of enzymes.


Assuntos
Materiais Biomiméticos/química , Hidrogênio/química , Peptídeos/química , Aminoácidos/química , Materiais Biomiméticos/síntese química , Catálise , Dipeptídeos/química , Eletroquímica , Hidrogenase/química , Hidrogenase/metabolismo , Ligantes , Modelos Moleculares , Conformação Molecular , Nitrogênio/química , Análise Espectral , Água/química
20.
Inorg Chem ; 50(23): 11914-28, 2011 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-22040085

RESUMO

Hydrides of numerous transition metal complexes can be generated by the heterolytic cleavage of H(2) gas such that they offer alternatives to using main group hydrides in the regeneration of ammonia borane, a compound that has been intensely studied for hydrogen storage applications. Previously, we reported that HRh(dmpe)(2) (dmpe = 1,2-bis(dimethylphosphinoethane)) was capable of reducing a variety of BX(3) compounds having a hydride affinity (HA) greater than or equal to the HA of BEt(3). This study examines the reactivity of less expensive cobalt and nickel hydride complexes, HCo(dmpe)(2) and [HNi(dmpe)(2)](+), to form B-H bonds. The hydride donor abilities (ΔG(H(-))°) of HCo(dmpe)(2) and [HNi(dmpe)(2)](+) were positioned on a previously established scale in acetonitrile that is cross-referenced with calculated HAs of BX(3) compounds. The collective data guided our selection of BX(3) compounds to investigate and aided our analysis of factors that determine favorability of hydride transfer. HCo(dmpe)(2) was observed to transfer H(-) to BX(3) compounds with X = H, OC(6)F(5), and SPh. The reaction with B(SPh)(3) is accompanied by the formation of dmpe-(BH(3))(2) and dmpe-(BH(2)(SPh))(2) products that follow from a reduction of multiple B-SPh bonds and a loss of dmpe ligands from cobalt. Reactions between HCo(dmpe)(2) and B(SPh)(3) in the presence of triethylamine result in the formation of Et(3)N-BH(2)SPh and Et(3)N-BH(3) with no loss of a dmpe ligand. Reactions of the cationic complex [HNi(dmpe)(2)](+) with B(SPh)(3) under analogous conditions give Et(3)N-BH(2)SPh as the final product along with the nickel-thiolate complex [Ni(dmpe)(2)(SPh)](+). The synthesis and characterization of HCo(dedpe)(2) (dedpe = Et(2)PCH(2)CH(2)PPh(2)) from H(2) and a base is also discussed, including the formation of an uncommon trans dihydride species, trans-[(H)(2)Co(dedpe)(2)][BF(4)].

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA