Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nature ; 473(7345): 101-4, 2011 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-21471965

RESUMO

Despite the high prevalence and poor outcome of patients with metastatic lung cancer the mechanisms of tumour progression and metastasis remain largely uncharacterized. Here we modelled human lung adenocarcinoma, which frequently harbours activating point mutations in KRAS and inactivation of the p53 pathway, using conditional alleles in mice. Lentiviral-mediated somatic activation of oncogenic Kras and deletion of p53 in the lung epithelial cells of Kras(LSL-G12D/+);p53(flox/flox) mice initiates lung adenocarcinoma development. Although tumours are initiated synchronously by defined genetic alterations, only a subset becomes malignant, indicating that disease progression requires additional alterations. Identification of the lentiviral integration sites allowed us to distinguish metastatic from non-metastatic tumours and determine the gene expression alterations that distinguish these tumour types. Cross-species analysis identified the NK2-related homeobox transcription factor Nkx2-1 (also called Ttf-1 or Titf1) as a candidate suppressor of malignant progression. In this mouse model, Nkx2-1 negativity is pathognomonic of high-grade poorly differentiated tumours. Gain- and loss-of-function experiments in cells derived from metastatic and non-metastatic tumours demonstrated that Nkx2-1 controls tumour differentiation and limits metastatic potential in vivo. Interrogation of Nkx2-1-regulated genes, analysis of tumours at defined developmental stages, and functional complementation experiments indicate that Nkx2-1 constrains tumours in part by repressing the embryonically restricted chromatin regulator Hmga2. Whereas focal amplification of NKX2-1 in a fraction of human lung adenocarcinomas has focused attention on its oncogenic function, our data specifically link Nkx2-1 downregulation to loss of differentiation, enhanced tumour seeding ability and increased metastatic proclivity. Thus, the oncogenic and suppressive functions of Nkx2-1 in the same tumour type substantiate its role as a dual function lineage factor.


Assuntos
Regulação Neoplásica da Expressão Gênica , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Adenocarcinoma/genética , Adenocarcinoma/fisiopatologia , Adenocarcinoma de Pulmão , Animais , Diferenciação Celular , Linhagem Celular Tumoral , Modelos Animais de Doenças , Regulação para Baixo , Proteína HMGA2/genética , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/fisiopatologia , Camundongos , Fator Nuclear 1 de Tireoide
2.
Cancer Res ; 68(22): 9459-68, 2008 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-19010921

RESUMO

Maximizing the potential of cancer immunotherapy requires model systems that closely recapitulate human disease to study T-cell responses to tumor antigens and to test immunotherapeutic strategies. We have created a new system that is compatible with Cre-LoxP-regulatable mouse cancer models in which the SIY antigen is specifically overexpressed in tumors, mimicking clinically relevant TAAs. To show the utility of this system, we have characterized SIY-reactive T cells in the context of lung adenocarcinoma, revealing multiple levels of antigen-specific T-cell tolerance that serve to limit an effective antitumor response. Thymic deletion reduced the number of SIY-reactive T cells present in the animals. When potentially self-reactive T cells in the periphery were activated, they were efficiently eliminated. Inhibition of apoptosis resulted in more persistent self-reactive T cells, but these cells became anergic to antigen stimulation. Finally, in the presence of tumors overexpressing SIY, SIY-specific T cells required a higher level of costimulation to achieve functional activation. This system represents a valuable tool in which to explore sources contributing to T-cell tolerance of cancer and to test therapies aimed at overcoming this tolerance.


Assuntos
Adenocarcinoma/imunologia , Antígenos de Neoplasias/imunologia , Tolerância Imunológica , Neoplasias Pulmonares/imunologia , Linfócitos T/imunologia , Adenocarcinoma/terapia , Animais , Apresentação de Antígeno , Citotoxicidade Imunológica , Integrases/fisiologia , Neoplasias Pulmonares/terapia , Camundongos , Camundongos Endogâmicos C57BL
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA