RESUMO
Breast cancer is the most common cancer in women worldwide, identification of new biomarkers for early diagnosis and detection will improve the clinical outcome of breast cancer patients. In the present study, we determined serum levels of vitronectin (VN) in 93 breast cancer patients, 30 benign breast lesions, 9 precancerous lesions, and 30 healthy individuals by enzyme-linked immunosorbent assays. Serum VN level was significantly higher in patients with stage 0-I primary breast cancer than in healthy individuals, patients with benign breast lesion or precancerous lesions, as well as those with breast cancer of higher stages. Serum VN level was significantly and negatively correlated with tumor size, lymph node status, and clinical stage (p < 0.05 in all cases). In addition, VN displayed higher area under curve (AUC) value (0.73, 95 % confidence interval (CI) [0.62-0.84]) than carcinoembryonic antigen (CEA) (0.64, 95 % CI [0.52-0.77]) and cancer antigen 15-3 (CA 15-3) (0.69, 95 % CI [0.58-0.81]) when used to distinguish stage 0-I cancer and normal control. Importantly, the combined use of three biomarkers yielded an improvement in receiver operating characteristic curve with an AUC of 0.83, 95 % CI [0.74-0.92]. Taken together, our current study showed for the first time that serum VN is a promising biomarker for early diagnosis of breast cancer when combined with CEA and CA15-3.
Assuntos
Biomarcadores Tumorais/sangue , Neoplasias da Mama/sangue , Neoplasias da Mama/diagnóstico , Vitronectina/sangue , Adulto , Idoso , Antígenos de Neoplasias/sangue , Área Sob a Curva , Neoplasias da Mama/patologia , Antígeno Carcinoembrionário/sangue , Detecção Precoce de Câncer/métodos , Feminino , Humanos , Linfonodos/patologia , Pessoa de Meia-Idade , PrognósticoRESUMO
The present study aims to identify distinctive Raman spectrum metabolic peaks to predict hepatocellular carcinoma (HCC). We performed a label-free, non-invasive surface-enhanced Raman spectroscopy (SERS) test on 230 serum samples including 47 HCC, 60 normal controls (NC), 68 breast cancer (BC) and 55 lung cancer (LC) by mixing Au@AgNRs with serum directly. Based on the observed SERS spectra, discriminative metabolites including tryptophan, phenylalanine, and etc. were found in HCC, when compared with BC, LC, and NC (P<0.05 in all). Common metabolites-proline, valine, adenine and thymine were found in HCC, BC and LC with compared to NC group (P<0.05). Importantly, Raman spectra of HCC serum biomarker AFP were firstly detected to analyze the HCC prominent peak. Orthogonal partial least squares discriminant analysis was adopted to assess the diagnostic accuracy; area under curve value of HCC is 0.991. This study provides new insights into the HCC metabolites detection through Raman spectroscopy.
Assuntos
Carcinoma Hepatocelular/diagnóstico por imagem , Neoplasias Hepáticas/diagnóstico por imagem , Metaboloma , Análise Espectral Raman , Biomarcadores Tumorais , HumanosRESUMO
Induced pluripotent stem cell (iPSC) provides a promising seeding cell for regenerative medicine. However, iPSC has the potential to form teratomas after transplantation. Therefore, it is necessary to evaluate the tumorigenic risks of iPSC and all its differentiated derivates prior to use in a clinical setting. Here, murine iPSCs were transduced with dual reporter gene consisting of monomeric red fluorescent protein (mRFP) and firefly luciferase (Fluc). Undifferentiated iPSCs, iPSC derivates from induced differentiation (iPSC-derivates), iPSC-derivated cardiomyocyte (iPSC-CMs) were subcutaneously injected into the back of nude mice. Non-invasive bioluminescence imaging (BLI) was longitudinally performed at day 1, 7, 14 and 28 after transplantation to track the survival and proliferation of transplanted cells. At day 28, mice were killed and grafts were explanted to detect teratoma formation. The results demonstrated that transplanted iPSCs, iPSC-derivates and iPSC-CMs survived in receipts. Both iPSCs and iPSC-derivates proliferated dramatically after transplantation, while only slight increase in BLI signals was observed in iPSC-CM transplanted mice. At day 28, teratomas were detected in both iPSCs and iPSC-derivates transplanted mice, but not in iPSC-CM transplanted ones. In vitro study showed the long-term existence of pluripotent cells during iPSC differentiation. Furthermore, when these cells were passaged in feeder layers as undifferentiated iPSCs, they would recover iPSC-like colonies, indicating the cause for differentiated iPSC's tumourigenicity. Our study indicates that exclusion of tumorigenic cells by screening in addition to lineage-specific differentiation is necessary prior to therapeutic use of iPSCs.
Assuntos
Transformação Celular Neoplásica/patologia , Células-Tronco Pluripotentes Induzidas/citologia , Miócitos Cardíacos/citologia , Teratoma/patologia , Animais , Biomarcadores/metabolismo , Diferenciação Celular , Linhagem da Célula , Transformação Celular Neoplásica/metabolismo , Genes Reporter , Sobrevivência de Enxerto , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/transplante , Injeções Subcutâneas , Luciferases de Vaga-Lume , Camundongos , Camundongos Nus , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/transplante , Teratoma/metabolismoRESUMO
Telocyte (TC) as a special stromal cell exists in mammary gland and might play an important role in the balance of epithelium-stroma of mammary gland. Considering that different types of breast interstitial cells influence the development and progression of breast cancer, TCs may have its distinct role in this process. We here studied the roles of TCs in the self-assembly of reconstituted breast cancer tissue. We co-cultured primary isolated TCs and other breast stromal cells with breast cancer EMT-6 cells in collagen/Matrigel scaffolds to reconstitute breast cancer tissue in vitro. Using histology methods, we investigated the immunohistochemical characteristics and potential functions of TCs in reconstituted breast cancer tissue. TCs in primary mammary gland stromal cells with long and thin overlapping cytoplasmic processes, expressed c-kit/CD117, CD34 and vimentin in reconstitute breast cancer tissue. The transmission electron microscopy showed that the telocyte-like cells closely communicated with breast cancer cells as well as other stromal cells, and might serve as a bridge that directly linked the adjacent cells through membrane-to-membrane contact. Compared with cancer tissue sheets of EMT-6 alone, PCNA proliferation index analysis and TUNEL assay showed that TCs and other breast stromal cells facilitated the formation of typical nest structure, promoted the proliferation of breast cancer cells, and inhibited their apoptosis. In conclusion, we successfully reconstituted breast cancer tissue in vitro, and it seems to be attractive that TCs had potential functions in self-assembly of EMT-6/stromal cells reconstituted breast cancer tissue.
Assuntos
Comunicação Celular , Glândulas Mamárias Animais/patologia , Neoplasias Mamárias Experimentais/metabolismo , Neoplasias Mamárias Experimentais/patologia , Animais , Antígenos CD/genética , Antígenos CD/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Técnicas de Cocultura , Colágeno , Combinação de Medicamentos , Feminino , Expressão Gênica , Laminina , Glândulas Mamárias Animais/fisiologia , Neoplasias Mamárias Experimentais/genética , Camundongos , Camundongos Endogâmicos BALB C , Cultura Primária de Células , Proteoglicanas , Proteínas Proto-Oncogênicas c-kit/genética , Proteínas Proto-Oncogênicas c-kit/metabolismo , Transdução de Sinais , Células Estromais/patologia , Células Estromais/fisiologia , Técnicas de Cultura de Tecidos , Vimentina/genética , Vimentina/metabolismoRESUMO
A novel polysaccharide-based zwitterionic copolymer, agarose-graft-poly[3-dimethyl (methacryloyloxyethyl) ammonium propanesulfonate] (agarose-g-PDMAPS) with UCST, depending both on hydrogen bonding and electrostatic interaction, was synthesized by ATRP, and its aggregation behavior in aqueous media was investigated in detail. Proton nuclear magnetic resonance spectroscopy, Fourier transform-infrared spectroscopy, and gel-permeation chromatography were performed to characterize the copolymer. Thermosensitive behaviors of the copolymers in water, NaCl, and urea solution were tracked by ultraviolet, dynamic light scattering, and transmission electron microscopy analysis. It was found that the copolymers existed as "core-shell" spheres at an elevated temperature, as a result of the self-assembly of the agarose backbones located in the "core" driven by hydrogen-bonding interactions. When the copolymer solution was cooled below UCST, the core-shell spheres began to aggregate because of the electrostatic interactions and collapse of PDMAPS side chains in the "shell" layer. UCST of the copolymer could be tuned in a wide range, depending on the chain lengths of PDMAPS. This is the first example to investigate the thermosensitivity, combining ionic interactions of the zwitterionic side chains with hydrogen bondings from the biocompatible agarose backbones. The synthetic strategy presented here can be employed in the preparation of other novel biomaterials from a variety of polysaccharides.
Assuntos
Polímeros/química , Polímeros/síntese química , Sefarose/química , Cromatografia em Gel , Espectroscopia de Ressonância Magnética , Microscopia Eletrônica de Transmissão , Espectroscopia de Infravermelho com Transformada de Fourier , Água/químicaRESUMO
Cell sheet engineering has been proven to be a promising strategy for cardiac remodeling post-myocardial infarction. However, insufficient mechanical strength and low cell retention lead to limited therapeutic efficiency. The thickness and area of artificial cardiac patches also affect their therapeutic efficiency. Cardiac patches prepared by combining cell sheets with electrospun nanofibers, which can be transplanted and sutured to the surface of the infarcted heart, promise to solve this problem. Here, we fabricated a novel cardiac patch by stacking brown adipose-derived stem cells (BADSCs) sheet layer by layer, and then they were combined with multi-walled carbon nanotubes (CNTs)-containing electrospun polycaprolactone/silk fibroin nanofibers (CPSN). The results demonstrated that BADSCs tended to generate myocardium-like structures seeded on CPSN. Compared with BADSCs suspension-containing electrospun nanofibers, the transplantation of the CPSN-BADSCs sheets (CNBS) cardiac patches exhibited accelerated angiogenesis and decreased inflammation in a rat myocardial infarction model. In addition, the CNBS cardiac patches could regulate macrophage polarization and promote gap junction remodeling, thus restoring cardiac functions. Overall, the hybrid cardiac patches made of electrospun nanofibers and cell sheets provide a novel solution to cardiac remodeling after ischemic myocardial infarction.
RESUMO
In this study, an injectable, biodegradable hydrogel composite of oligo[poly(ethylene glycol) fumarate] (OPF) was investigated as a carrier of mouse embryonic stem cells (mESCs) for the treatment of myocardial infarction (MI). The OPF hydrogels were used to encapsulate mESCs. The cell differentiation in vitro over 14 days was determined via immunohistochemical examination. Then, mESCs encapsulated in OPF hydrogels were injected into the LV wall of a rat MI model. Detailed histological analysis and echocardiography were used to determine the structural and functional consequences after 4 weeks of transplantation. With ascorbic acid induction, mESCs could differentiate into cardiomyocytes and other cell types in all three lineages in the OPF hydrogel. After transplantation, both the 24-hr cell retention and 4-week graft size were significantly greater in the OPF + ESC group than that of the PBS + ESC group (P < 0.01). Four weeks after transplantation, OPF hydrogel alone significantly reduced the infarct size and collagen deposition and improved the cardiac function. The heart function and revascularization improved significantly, while the infarct size and fibrotic area decreased significantly in the OPF + ESC group compared with that of the PBS + ESC, OPF and PBS groups (P < 0.01). All treatments had significantly reduced MMP2 and MMP9 protein levels compared to the PBS control group, and the OPF + ESC group decreased most by Western blotting. Transplanted mESCs expressed cardiovascular markers. This study suggests the potential of a method for heart regeneration involving OPF hydrogels for stem cell encapsulation and transplantation.
Assuntos
Materiais Biocompatíveis/química , Células-Tronco Embrionárias/transplante , Hidrogéis/química , Infarto do Miocárdio/terapia , Animais , Diferenciação Celular , Linhagem Celular , Modelos Animais de Doenças , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Feminino , Injeções , Camundongos , Infarto do Miocárdio/patologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/transplante , Poliésteres/química , Polietilenoglicóis/química , Ratos , Ratos Sprague-DawleyRESUMO
The multi-bacterial environment of the oral cavity makes it hard for periodontal regeneration. As a class of antimicrobial peptide, beta defensin has been found to show broad-spectrum antibacterial ability. In addition, connective tissue growth factor (CTGF) is demonstrated to play a great role in multi-physiological events such as angiogenesis, wound healing and, more importantly, fibrogenesis. In this study, human ß defensin 3 (hBD3) and CTGF were co-transfected into bone marrow derived mesenchymal stem cells (BMSCs) for preparing cell sheets. The transfection efficiency was detected through fluorescence of eGFP and western blot assay. Our results showed that the hBD3 and CTGF proteins were highly and stably expressed in the BMSCs after transfection. The results of RT-PCR and induced differentiation indicated that hBD3 promoted osteogenic differentiation of BMSCs, while CTGF significantly increased fibrogenic differentiation even in the presence of hBD3. The BMSCs acquired stronger capacity in terms of promoting M2 polarization of RAW 264.7 macrophages fulfilled by the transfection and secretion of hBD3 and CTGF. To further evaluate the periodontal remodeling performance of cell sheets, a coralline hydroxyapatite (CHA)-chitosan based hydrogel-human tooth system was designed to simulate the natural periodontal environment. The results showed that dense extracellular matrix, oriented fiber arrangement, and abundant collagen deposition appeared in the area of BMSCs sheets after subcutaneous transplantation. Altogether, our data showed that the lentivirus transfected BMSCs sheets had a promising application prospect for periodontal repair.
Assuntos
Regeneração Tecidual Guiada Periodontal , Células-Tronco Mesenquimais , beta-Defensinas , Diferenciação Celular/genética , Fator de Crescimento do Tecido Conjuntivo/genética , Humanos , Osteogênese/genética , beta-Defensinas/genéticaRESUMO
This study attempted to use collagen-Matrigel as extracellular matrix (ECM) to supply cells with three-dimensional (3D) culture condition and employ alginate-poly-l-lysine-alginate (APA) microcapsules to control the formation of alveolus-like structure in vitro. We tested mice foetal pulmonary cells (FPCs) by immunohistochemistry after 2D culture. The alveolus-like structure was reconstructed by seeding FPCs in collagen-Matrigel mixed with APA microcapsules 1.5 ml. A self-made mould was used to keep the structure from contraction. Meanwhile, it provided static stretch to the structure. After 7, 14 and 21 days of culture, the alveolus-like structure was analysed histologically and immunohistochemically, or by scanning transmission electron microscopy (TEM). We also observed these structures under inverted phase contrast microscope. The expression of pro-surfactant protein C (SpC) was detected by reverse transcription-polymerase chain reaction (RT-PCR). We obtained fibroblasts, epithelial cells and alveolar type II (AE2) cells in FPCs. In the reconstructed structure, seeding cells surrounding the APA microcapsules constructed alveolus-like structures, the size of them ranges from 200 to 300 µm. In each reconstructed lung tissue sheet, microcapsules had integrity. Pan-cytokeratin, vimentin and SpC positive cells were observed in 7- and 14-day cultured structures. TEM showed lamellar bodies of AE2 cells in the reconstructed tissues whereas RT-PCR expressed SpC gene. Primary mice FPCs could form alveolus-like structures in collagen-Matrigel/APA microcapsules engineered scaffolds, which could maintain a differentiated state of AE2 cells.
Assuntos
Colágeno/farmacologia , Laminina/farmacologia , Proteoglicanas/farmacologia , Alvéolos Pulmonares/fisiologia , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Animais , Cápsulas , Técnicas de Cultura de Células , Combinação de Medicamentos , Feto/citologia , Imuno-Histoquímica , Camundongos , Camundongos Endogâmicos BALB C , Alvéolos Pulmonares/citologia , Alvéolos Pulmonares/embriologia , Alvéolos Pulmonares/ultraestrutura , Reação em Cadeia da Polimerase Via Transcriptase ReversaRESUMO
Recently, the presence of telocytes was demonstrated in human and mammalian tissues and organs (digestive and extra-digestive organs, genitourinary organs, heart, placenta, lungs, pleura, striated muscle). Noteworthy, telocytes seem to play a significant role in the normal function and regeneration of myocardium. By cultures of telocytes in two- and three-dimensional environment we aimed to study the typical morphological features as well as functionality of telocytes, which will provide important support to understand their in vivo roles. Neonatal rat cardiomyocytes were isolated and cultured as seeding cells in vitro in two-dimensional environment. Furthermore, engineered myocardium tissue was constructed from isolated cells in three-dimensional collagen/Matrigel scaffolds. The identification of telocytes was performed by using histological and immunohistochemical methods. The results showed that typical telocytes are distributed among cardiomyocytes, connecting them by long telopodes. Telocytes have a typical fusiform cell body with two or three long moniliform telopodes, as main characteristics. The vital methylene blue staining showed the existence of telocytes in primary culture. Immunohistochemistry demonstrated that some c-kit or CD34 immuno-positive cells in engineered heart tissue had the morphology of telocytes, with a typical fusiform cell body and long moniliform telopodes. Also, a significant number of vimentin+ telocytes were present within engineered heart tissue. We suggest that the model of three-dimensional engineered heart tissue could be useful for the ongoing research on the functional relationships of telocytes with cardiomyocytes. Because the heart has the necessary potential of changing the muscle and non-muscle cells during the lifetime, telocytes might play an active role in the heart regeneration process. Moreover, telocytes might be a useful tool for cardiac tissue engineering.
Assuntos
Coração/crescimento & desenvolvimento , Células Intersticiais de Cajal/citologia , Miócitos Cardíacos/citologia , Animais , Animais Recém-Nascidos , Antígenos CD34/metabolismo , Técnicas de Cultura de Células , Células Cultivadas , Humanos , Proteínas Proto-Oncogênicas c-kit/metabolismo , Ratos , Ratos Wistar , Engenharia Tecidual , Vimentina/metabolismoRESUMO
Cardiac stem cells represent a logical cell type to exploit in cardiac regeneration. The efficient harvest of cardiac stem cells from a suitable source would turn promising in cardiac stem cell therapy. Brown adipose was recently found to be a new source of cardiac stem cells, instrumental to myocardial regeneration. Unfortunately, an efficient method for the cell isolation is unavailable so far. In our study we have developed a new method for the efficient isolation of cardiac stem cells from brown adipose by combining different enzymes. Results showed that the total cell yield dramatically increased (more than 10 times, P < .01) compared with that by previous method. The content of CD133-positive cells (reported to differentiate into cardiomyocytes with a high frequency) was much higher than that in the previous report (22.43% versus 3.5%). Moreover, the isolated cells could be the efficiently differentiated into functional cardiomyocytes in optimized conditions. Thus, the new method we established would be of great use in further exploring cardiac stem cell therapy.
Assuntos
Tecido Adiposo Marrom/citologia , Técnicas de Cultura de Células/métodos , Separação Celular/métodos , Miócitos Cardíacos/citologia , Células-Tronco/citologia , Antígeno AC133 , Tecido Adiposo Marrom/metabolismo , Animais , Antígenos CD/biossíntese , Diferenciação Celular/fisiologia , Sobrevivência Celular/fisiologia , Células Cultivadas , Colagenases/metabolismo , Endopeptidases/metabolismo , Citometria de Fluxo , Glicoproteínas/biossíntese , Imuno-Histoquímica , Miócitos Cardíacos/fisiologia , Peptídeos , Ratos , Ratos Sprague-Dawley , Tripsina/metabolismoRESUMO
BACKGROUND: Fractures are a medical disease with a high incidence, and about 5-10% of patients need bone transplantation to fill the defect. In this study, we aimed to synthesize a new type of coralline hydroxyapatite (CHA)/silk fibroin (SF)/glycol chitosan (GCS)/difunctionalized polyethylene glycol (DF-PEG) self-healing hydrogel and to evaluate the therapeutic effects of this novel self-healing hydrogel as a human umbilical cord mesenchymal stem cells (hucMSC)-derived exosome carrier on bone defects in SD rat. METHODS: HucMSCs were isolated from fetal umbilical cord tissue and characterized by surface antigen analysis and pluripotent differentiation in vitro. The cell supernatant after ultracentrifugation was collected to isolate exosomes, which were characterized by transmission electron microscopy and western blot analysis. In vitro cell induction experiments were performed to observe the effects of hucMSC-derived exosomes on the biological behavior of mouse osteoblast progenitor cells (mOPCs) and human umbilical vein endothelial cells (HUVECs). The CHA/SF/GCS/DF-PEG hydrogels were prepared using DF-PEG as the gel factor and then structural and physical properties were characterized. HucMSCs-derived exosomes were added to the hydrogel and their effects were evaluated in SD rats with induced femoral condyle defect. These effects were analyzed by X-ray and micro-CT imaging and H&E, Masson and immunohistochemistry staining. RESULTS: HucMSC-derived exosomes can promote osteogenic differentiation of mOPCs and promote the proliferation and migration of HUVECs. The CHA/SF/GCS/DF-PEG hydrogel has a high self-healing capacity, perfect surface morphology and the precipitated CHA crystals have a small size and low crystallinity similar to natural bone minerals. The MTT results showed that the hydrogel was non-toxic and have a good biocompatibility. The in vivo studies have shown that the hydrogel containing exosomes could effectively promote healing of rat bone defect. The histological analysis revealed more new bone tissue and morphogenetic protein 2 (BMP-2) in the hydrogel-exosome group. In addition, the hydrogel-exosome group had the highest microvessel density. CONCLUSION: A self-healing CHA/SF/GCS/DF-PEG hydrogel was successfully prepared. The hydrogel has excellent comprehensive properties and is expected to become a new type of bone graft material. This hydrogel has the effect of promoting bone repair, which is more significant after the addition of hucMSC-derived exosomes.
RESUMO
Although targeted therapy has been extensively investigated for breast cancers, a molecular target with broad application is currently unavailable due to the high heterogeneity of these cancers. Mammaglobin-A (Mam-A), which is overexpressed in most breast carcinomas, has been proposed as a promising target. However, the lack of specific targeting moieties due to uncertain binding epitopes hampers further translational study. Here, seven potential epitopes of Mam-A were disclosed, and a unique epitope was then identified in most types of breast cancers, despite the genotypic heterogeneity. With phage display technology, the epitope was determined to be N-terminal amino acids 42-51 of Mam-A (N42-51). Then, the N42-51 epitope-specific monoclonal antibody, mAb785, was conjugated to poly lactic-co-glycolic acid (PLGA) nanoparticles loaded with therapeutic agents, thereby enhancing the drug uptake and therapeutic efficacy in different genotypes of breast cancers. The computer simulation of the N42-51 epitope and the mAb785 structures, as well as their interactions, further revealed the specific targeting mechanism of the mAb785-conjugated nanoparticles to breast cancers.
Assuntos
Anticorpos Monoclonais/farmacologia , Antineoplásicos Imunológicos/farmacologia , Neoplasias da Mama/terapia , Mamoglobina A/farmacologia , Anticorpos Monoclonais/imunologia , Antineoplásicos Imunológicos/imunologia , Neoplasias da Mama/genética , Neoplasias da Mama/imunologia , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/imunologia , Linhagem Celular Tumoral , Epitopos/genética , Epitopos/imunologia , Feminino , Humanos , Mamoglobina A/genética , Mamoglobina A/imunologia , Nanopartículas/química , Proteínas de Neoplasias/genética , Linfócitos T Citotóxicos/efeitos dos fármacos , Linfócitos T Citotóxicos/imunologiaRESUMO
Transplantation of pancreatic islets is a potentially attractive treatment for type I diabetes. We generated the transplantable, tissue-like aggregates composed of Sertoli cells and islets in rotating wall vessel bioreactors, SICA (Sertoli-islet cell aggregates), to improve their biological function in vitro and in vivo. The isolated islet equivalent and Sertoli cells were purified from Wistar rats and cocultured for 5 days in bioreactor to generate SICA. The SICA, islets aggregates, and fresh isolated islets were transplanted under the kidney capsule of diabetic Sprague-Dawley (SD) rats, respectively. The functions of different grafts were ascertained by blood glucose level measurements and an in vivo glucose tolerance test. In response to elevated glucose, insulin secretion from SICA was 1.4-fold higher (P<0.05, n=5) than islet aggregates cultured alone. Of the rats that received SICA, 90% (9/10) remained normoglycemic at 60 days post-transplantation, and the survival significantly increased compared with recipients bearing homotypic islets aggregates or freshly isolated islets. The former responded similarly with healthy rats to the glucose tolerance test. Our results support the usefulness of SICA for the treatment of type 1 diabetes without any immunosuppressive agents.
Assuntos
Diabetes Mellitus Experimental/terapia , Transplante das Ilhotas Pancreáticas , Ilhotas Pancreáticas , Células de Sertoli/transplante , Ausência de Peso , Animais , Separação Celular , Células Cultivadas , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Experimental/fisiopatologia , Diabetes Mellitus Tipo 1/patologia , Diabetes Mellitus Tipo 1/fisiopatologia , Diabetes Mellitus Tipo 1/terapia , Teste de Tolerância a Glucose , Ilhotas Pancreáticas/ultraestrutura , Masculino , Ratos , Ratos Sprague-Dawley , Ratos Wistar , Células de Sertoli/ultraestrutura , Transplante HomólogoRESUMO
Autogenic embryonic stem cells established from somatic cell nuclear transfer (SCNT) embryos have been proposed as unlimited cell sources for cell transplantation-based treatment of many genetic and degenerative diseases, which can eliminate the immune rejection that occurs after transplantation. In the present study, pluripotent nuclear transfer ES (NTES) cell lines were successfully established from different strains of mice. One NTES cell line, NT1, with capacity of germline transmission, was used to investigate in vitro differentiation into cardiomyocytes. To optimize differentiation conditions for mass production of embryoid bodies (NTEBs) from NTES cells, a slow-turning lateral vessel (STLV) rotating bioreactor was used for culturing the NTES cells to produce NTEBs compared with a conventional static cultivation method. Our results demonstrated that the NTEBs formed in STLV bioreactor were more uniform in size, and no large necrotic centers with most of the cells in NTEBs were viable. Differentiation of the NTEBs formed in both the STLV bioreactor and static culture into cardiomyocytes was induced by ascorbic acid, and the results demonstrated that STLV-produced NTEBs differentiated into cardiomyocytes more efficiently. Taken together, our results suggested that STLV bioreactor provided a more ideal culture condition, which can facilitate the formation of better quality NTEBs and differentiation into cardiomyocytes more efficiently in vitro.
Assuntos
Reatores Biológicos , Diferenciação Celular , Células-Tronco Embrionárias/citologia , Miócitos Cardíacos/citologia , Técnicas de Transferência Nuclear , Animais , Técnicas de Cultura de Células/métodos , Sobrevivência Celular , Embrião de Mamíferos/citologia , Embrião de Mamíferos/fisiologia , Células-Tronco Embrionárias/fisiologia , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Miócitos Cardíacos/fisiologia , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/fisiologiaRESUMO
OBJECTIVE: We aimed to determine whether IP-10 and RANTES plasma levels can be used in diagnosis and monitoring of pulmonary tuberculosis (PTB). METHODS: Plasma levels of cytokines/chemokines were measured using a Bio-Plex® multiplex cytokine assay system in a cohort containing 457 clinically suspected PTB patients including a training set (nâ¯=â¯41)and two independent test sets A (nâ¯=â¯242) and B (nâ¯=â¯174). RESULTS: Plasma levels of IP-10 and RANTES were significantly higher in PTB patients than healthy controls' in both training and independent test sets (Pâ¯<â¯0.05). Compared with other combinations, the combination of IP-10 and RANTES had the best performance with an AUC of 1.0 in training set. The performance characteristic of this model was successfully validated in independent test set A although this combination only resulted in a slightly improvement of AUC value in independent test set B. Plasma IP-10 and RANTES levels were weakly and positively correlated with blood glucose concentrations. Moreover, IP-10 levels were positively correlated with CRP and ESR in PTB patients. Furthermore, in response to therapy, both IP-10 and RANTES levels significantly decreased over the period of 6 months (Pâ¯<â¯0.001). CONCLUSIONS: Taken together, combination of IP-10 and RANTES could be potentially used as diagnostic and monitoring biomarker in PTB management.
Assuntos
Quimiocina CCL5/sangue , Quimiocina CXCL10/sangue , Tuberculose Pulmonar/sangue , Tuberculose Pulmonar/diagnóstico , Adolescente , Adulto , Idoso , Antituberculosos/uso terapêutico , Biomarcadores/sangue , Estudos de Casos e Controles , Monitoramento de Medicamentos/métodos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Valor Preditivo dos Testes , Reprodutibilidade dos Testes , Resultado do Tratamento , Tuberculose Pulmonar/tratamento farmacológico , Tuberculose Pulmonar/microbiologia , Regulação para Cima , Adulto JovemRESUMO
BACKGROUND: Embryonic stem (ES) cells can terminally differentiate into all types of somatic cells and are considered a promising source of seed cells for tissue engineering. However, despite recent progress in in vitro differentiation and in vivo transplantation methodologies of ES cells, to date, no one has succeeded in using ES cells in tissue engineering for generation of somatic tissues in vitro for potential transplantation therapy. METHODS AND RESULTS: ES-D3 cells were cultured in a slow-turning lateral vessel for mass production of embryoid bodies. The embryoid bodies were then induced to differentiate into cardiomyocytes in a medium supplemented with 1% ascorbic acid. The ES cell-derived cardiomyocytes were then enriched by Percoll gradient centrifugation. The enriched cardiomyocytes were mixed with liquid type I collagen supplemented with Matrigel to construct engineered cardiac tissue (ECT). After in vitro stretching for 7 days, the ECT can beat synchronously and respond to physical and pharmaceutical stimulation. Histological, immunohistochemical, and transmission electron microscopic studies further indicate that the ECTs both structurally and functionally resemble neonatal native cardiac muscle. Markers related to undifferentiated ES cell contamination were not found in reverse transcriptase-polymerase chain reaction analysis of the Percoll-enriched cardiomyocytes. No teratoma formation was observed in the ECTs implanted subcutaneously in nude mice for 4 weeks. CONCLUSIONS: ES cells can be used as a source of seed cells for cardiac tissue engineering. Additional work remains to demonstrate engraftment of the engineered heart tissue in the case of cardiac defects and its functional integrity within the host's remaining healthy cardiac tissue.
Assuntos
Implantes Experimentais , Miócitos Cardíacos/transplante , Organoides/fisiologia , Células-Tronco/citologia , Engenharia Tecidual/métodos , Animais , Ácido Ascórbico/farmacologia , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas/citologia , Células Cultivadas/efeitos dos fármacos , Células Cultivadas/transplante , Colágeno , Colágeno Tipo I , Combinação de Medicamentos , Embrião de Mamíferos/citologia , Glutamina/farmacologia , Laminina , Mercaptoetanol/farmacologia , Camundongos , Camundongos Nus , Contração Miocárdica/efeitos dos fármacos , Miócitos Cardíacos/citologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/fisiologia , Proteoglicanas , Células-Tronco/efeitos dos fármacos , Estresse Mecânico , Engenharia Tecidual/instrumentaçãoRESUMO
AIM: To investigate whether estrogen stimulates the proliferation of spermatogonia or induces spermatogenesis in cryptorchid mice. METHODS: Mice were surgically rendered cryptorchid, then treated with different doses of 17beta-estradiol (E2) s.c. once a day. Mice were killed at sexual maturity (45 days of age), and histological analysis and immunofluorescence were performed. Serum follicle stimulating hormone (FSH), estradiol, testosterone and luteinizing hormone (LH) were measured. RESULTS: Low doses of E2 had no notable effect on spermatogonia, but at higher doses, E2 stimulated the proliferation of spermatogonia. CONCLUSION: E2 has a dose-related mitogenic effect on spermatogonia.
Assuntos
Divisão Celular/efeitos dos fármacos , Criptorquidismo/fisiopatologia , Estradiol/farmacologia , Espermatogônias/citologia , Animais , Modelos Animais de Doenças , Estradiol/sangue , Hormônio Foliculoestimulante/sangue , Hormônio Luteinizante/sangue , Masculino , Camundongos , Espermatogônias/efeitos dos fármacos , Espermatogônias/patologia , Testosterona/sangueRESUMO
OBJECTIVE: To clone the glial cell line-derived neurotrophic factor (GDNF) from the mouse testis, construct the eukaryotic expression vector and transfect this vector into Sertoli cells in order to use the gdnf-transfected Sertoli cells as the feeder layer to cultivate spermatogonial stem cells (SSCs). METHODS: Total RNA was extracted from the testes of normal mature mice and gdnf was cloned and amplified using RT-PCR, inserted into the eukaryotic expression vector and transfected into sertoli cells (TM4 cell line). Immunofluorescence with anti-GDNF antibodies was performed at 40 h following the transfection. RESULTS: gdnf cDNA was cloned successfully, and GDNF expressed after transfected into Sertoli cells. CONCLUSION: This study provides a basis for culturing SSCs with gdnf-transfected Sertoli cells as the feeder layer.
Assuntos
Fator Neurotrófico Derivado de Linhagem de Célula Glial/genética , Células de Sertoli/metabolismo , Testículo/metabolismo , Animais , Clonagem Molecular , Expressão Gênica , Masculino , Camundongos , Camundongos Endogâmicos , RNA/genética , RNA/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Testículo/citologia , TransfecçãoRESUMO
OBJECTIVES: Detection of circulating Mycobacterium tuberculosis (M. tuberculosis) antigens is promising in Tuberculosis (TB) diagnosis. However, not a single antigen marker has been found to be widely expressed in all TB patients. This study is aimed to prepare broadly reactive polyclonal antibodies targeting multiple antigen markers (multi-target antibodies) and evaluate their efficacies in TB diagnosis. MATERIALS AND METHODS: A fusion gene consisting of 38kD, ESAT6, and CFP10 was constructed and overexpressed. The fusion polyprotein was used as an immunogen to elicit production of multi-target antibodies. Their reactivities were tested. Then, the multi-target antibodies and three corresponding antibodies elicited by each single antigen (mono-target antibodies) were evaluated with sandwich ELISA for detecting M. tuberculosis antigens. Their diagnostic efficacies for TB were also compared. RESULTS: The polyprotein successfully elicited production of multi-target antibodies targeting 38kD, ESAT6, and CFP10 as analyzed by Western blotting. When used as coating antibodies, the multi-target antibodies were more efficient in capturing the three antigens than the corresponding mono-target antibodies. By testing clinical serum, the multi-target antibodies demonstrated significantly higher sensitivity for clinical TB diagnosis than all three mono-target antibodies. CONCLUSION: The multi-target antibodies allowed detecting multiple antigens simultaneously and significantly enhanced TB detection compared to routine mono-target antibodies. Our study may provide a promising strategy for TB diagnosis.