Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(4)2023 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-36834504

RESUMO

Transgenic expression of Cre recombinase driven by a specific promoter is normally used to conditionally knockout a gene in a tissue- or cell-type-specific manner. In αMHC-Cre transgenic mouse model, expression of Cre recombinase is controlled by the myocardial-specific α-myosin heavy chain (αMHC) promoter, which is commonly used to edit myocardial-specific genes. Toxic effects of Cre expression have been reported, including intro-chromosome rearrangements, micronuclei formation and other forms of DNA damage, and cardiomyopathy was observed in cardiac-specific Cre transgenic mice. However, mechanisms associated with Cardiotoxicity of Cre remain poorly understood. In our study, our data unveiled that αMHC-Cre mice developed arrhythmias and died after six months progressively, and none of them survived more than one year. Histopathological examination showed that αMHC-Cre mice had aberrant proliferation of tumor-like tissue in the atrial chamber extended from and vacuolation of ventricular myocytes. Furthermore, the αMHC-Cre mice developed severe cardiac interstitial and perivascular fibrosis, accompanied by significant increase of expression levels of MMP-2 and MMP-9 in the cardiac atrium and ventricular. Moreover, cardiac-specific expression of Cre led to disintegration of the intercalated disc, along with altered proteins expression of the disc and calcium-handling abnormality. Comprehensively, we identified that the ferroptosis signaling pathway is involved in heart failure caused by cardiac-specific expression of Cre, on which oxidative stress results in cytoplasmic vacuole accumulation of lipid peroxidation on the myocardial cell membrane. Taken together, these results revealed that cardiac-specific expression of Cre recombinase can lead to atrial mesenchymal tumor-like growth in the mice, which causes cardiac dysfunction, including cardiac fibrosis, reduction of the intercalated disc and cardiomyocytes ferroptosis at the age older than six months in mice. Our study suggests that αMHC-Cre mouse models are effective in young mice, but not in old mice. Researchers need to be particularly careful when using αMHC-Cre mouse model to interpret those phenotypic impacts of gene responses. As the Cre-associated cardiac pathology matched mostly to that of the patients, the model could also be employed for investigating age-related cardiac dysfunction.


Assuntos
Fibrilação Atrial , Cardiomiopatias , Ferroptose , Camundongos , Animais , Miócitos Cardíacos/metabolismo , Fibrilação Atrial/metabolismo , Cardiomiopatias/metabolismo , Camundongos Transgênicos , Fibrose , Camundongos Knockout
2.
Int J Mol Sci ; 23(21)2022 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-36361587

RESUMO

Liver hepatocellular carcinoma (LIHC) remains a global health challenge with poor prognosis and high mortality. FKBP1A was first discovered as a receptor for the immunosuppressant drug FK506 in immune cells and is critical for various tumors and cancers. However, the relationships between FKBP1A expression, cellular distribution, tumor immunity, and prognosis in LIHC remain unclear. Here, we investigated the expression level of FKBP1A and its prognostic value in LIHC via multiple datasets including ONCOMINE, TIMER, GEPIA, UALCAN, HCCDB, Kaplan-Meier plotter, LinkedOmics, and STRING. Human liver tissue microarray was employed to analyze the characteristics of FKBP1A protein including the expression level and pathological alteration in cellular distribution. FKBP1A expression was significantly higher in LIHC and correlated with tumor stage, grade and metastasis. The expression level of the FKBP1A protein was also increased in LIHC patients along with its accumulation in endoplasmic reticulum (ER). High FKBP1A expression was correlated with a poor survival rate in LIHC patients. The analysis of gene co-expression and the regulatory pathway network suggested that FKBP1A is mainly involved in protein synthesis, metabolism and the immune-related pathway. FKBP1A expression had a significantly positive association with the infiltration of hematopoietic immune cells including B cells, CD8+ T cells, CD4+ T cells, macrophages, neutrophils, and dendritic cells. Moreover, M2 macrophage infiltration was especially associated with a poor survival prognosis in LIHC. Furthermore, FKBP1A expression was significantly positively correlated with the expression of markers of M2 macrophages and immune checkpoint proteins such as PD-L1, CTLA-4, LAG3 and HAVCR2. Our study demonstrated that FKBP1A could be a potential prognostic target involved in tumor immune cell infiltration in LIHC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/patologia , Prognóstico , Neoplasias Hepáticas/patologia , Linfócitos T CD8-Positivos/patologia , Biomarcadores Tumorais , Perfilação da Expressão Gênica , Proteínas de Ligação a Tacrolimo/genética
3.
Cell Biosci ; 13(1): 135, 2023 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-37488646

RESUMO

BACKGROUND: Genetics evidences have long linked mosaic loss of Y-chromosome (mLOY) in peripheral leukocytes with a wide range of male age-associated diseases. However, a lack of cellular and molecular mechanistic explanations for this link has limited further investigation into the relationship between mLOY and male age-related disease. Excitingly, Sano et al. have provided the first piece of evidence directly linking mLOY to cardiac fibrosis through mLOY enriched profibrotic transforming growth factor ß1 (TGF-ß1) regulons in hematopoietic macrophages along with suppressed interleukin-1ß (IL-1ß) proinflammatory regulons. The results of this novel finding can be extrapolated to other disease related to mLOY, such as cancer, cardiac disease, and age-related macular degeneration. RESULTS: Sano et al. used a CRISPR-Cas9 gRNAs gene editing induced Y-chromosome ablation mouse model to assess results of a UK biobank prospective analysis implicating the Y-chromosome in male age-related disease. Using this in vivo model, Sano et al. showed that hematopoietic mLOY accelerated cardiac fibrosis and heart failure in male mice through profibrotic pathways. This process was linked to monocyte-macrophage differentiation during hematopoietic development. Mice confirmed to have mLOY in leukocytes, by loss of Y-chromosome genes Kdm5d, Uty, Eif2s3y, and Ddx3y, at similar percentages to the human population were shown to have accelerated rates of interstitial and perivascular fibrosis and abnormal echocardiograms. These mice also recovered poorly from the transverse aortic constriction (TAC) model of heart failure and developed left ventricular dysfunction at higher rates. This was attributed to aberrant proliferation of cardiac MEF-SK4 + fibroblasts promoted by mLOY macrophages enriched in profibrotic regulons and lacking in proinflammatory regulons. These pro-fibrotic macrophages localized to heart and eventually resulted in cardiac fibrosis via enhanced TGF-ß1 and suppressed IL-1ß signaling. Furthermore, treatment of mLOY mice with TGFß1 neutralizing antibody was able to improve their cardiac function. This study by Sano et al. was able to provide a causative link between the known association between mLOY and male cardiac disease morbidity and mortality for the first time, and thereby provide a new target for improving human health. CONCLUSIONS: Using a CRISPR-Cas9 induced Y-chromosome ablation mouse model, Sano et al. has proven mosaic loss of Y-chromosome in peripheral myeloid cells to have a causative effect on male mobility and mortality due to male age-related cardiac disease. They traced the mechanism of this effect to hyper-expression of the profibrotic TGF-ß1 and reduced pro-inflammatory IL-1ß signaling, attenuation of which could provide another potential strategy in improving outcomes against age-related diseases in men.

4.
Cell Biosci ; 12(1): 73, 2022 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-35642040

RESUMO

BACKGROUND: Age-related macular degeneration (AMD) is the leading cause of severe vision loss in patients over 55 years old in the industrialized world. In the past 20 years, approximately 288 million patents have been affected by this disease. Despite this high prevalence, the molecular mechanism for AMD remains unclear, and there remains no effective treatment for this disease. The mosaic loss of Y chromosome (mLOY) has been identified as a common phenomenon in multiple age-related disease (i.e., oncogenesis and cardiovascular disease) has recently been identified by genome-wide analysis to be linked to AMD as well. As the Y chromosome mainly possesses three genomic functions, sister chromatin cohesion, cell cycle mitosis, and apoptotic signaling, here we characterize the Y chromosome euchromatic genes and non-chromosome AMD genes in relevance to cellular proliferation and apoptotic signaling of leukocytes. RESULTS: Using STRING, a publically available database of all protein-protein interaction, Grassmann et al. found the genes on the Y chromosome is mainly believed to take part in three major cellular genomic functions- sister chromatin cohesion, cell cycle mitosis, and apoptotic signaling. Based on data from the Ensembl Genome database, we focus on our discussion on coding genes found in the euchromatins but not the PAR1 and PAR2 regions of the Y chromosomes. All 14 known euchromatic genes on the Y chromosome short arm and all 31 known euchromatic genes on the Y chromosome long arm (Yq) are directly or indirectly involved in the cell cycle (meiosis and mitosis) and proliferation. We sorted non-Y chromosome AMD associated genes into these three categories to identify signaling pathways that may compound with cellular dysregulation due to mLOY. Of the genes associated with AMD, complement pathway genes such as C2, C9 and CFH/ARMD4 are associated with proliferation, receptor-mediated endocytosis genes such as APOE, DAB2 and others associated with apoptotic signaling. Because nucleated cells found in peripheral circulation are mainly composed of leukocytes with reduced expression of CD99, a protein essential for leukocytes adhesion, translocation, and function, mLOY in these cells likely affect retinal degeneration through altered immunological surveillance. In fact, there is precedence that circulating macrophage can stabilize and modify the cardiac rhythm and contractility post ischemic damage. Therefore, the most likely mechanism through which peripheral mLOY affects AMD development in men is through the role affected leukocytes play in retinal proliferation and apoptosis. CONCLUSIONS: mLOY in peripheral blood is newly discovered in AMD by Grassmann et al. as it is a common phenomenon in oncogenesis and cardiac dysfunction. Here the recent data conclude the possible mechanism for the newly identified link between mLOY and AMD, and provide support that mLOY in circulating macrophage-monocyte of affected male patients promotes AMD by targeting the retina and causing macular degeneration.

5.
Microorganisms ; 8(5)2020 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-32365911

RESUMO

'Red Globe' table grapes are large, edible, seeded fruit with firm flesh that tastes good, but can have poor postharvest shelf-life. This study was conducted to explore the effects of products of Lactobacillus delbrueckii subsp. bulgaricus strain F17 and Leuconostoc lactis strain H52 on 'Red Globe' table grapes for the enhancement of shelf-life and improvement of grape quality characteristics during postharvest storage. Strains F17 and H52 were isolated from traditional fermented yak milk obtained in the Qinghai-Tibetan Plateau. Samples from untreated and treated grapes were analyzed for physicochemical, biochemical, and microbiological properties (weight loss, decay rate, pH, total soluble solids content, titratable acidity, total phenols, sensory evaluation, and microbial growth) for 20 days. The results demonstrated that supernatants from both strains significantly reduced weight loss, decay rate, aerobic mesophilic bacteria, and coliform bacteria counts; delayed maturity and senescence of table grapes; and reduced titratable acidity and total phenols. However, the supernatant of strain F17 was more effective and resulted in better sensory evaluations and had a significant inhibitory effect on yeast and molds by day 5. Meanwhile, the supernatant from strain H52 had a significant inhibitory effect on fungi over the whole storage period. In addition, the results of the Pearson correlation analysis suggested that weight loss, decay rate, total soluble solids content, and microorganisms were highly correlated with the sensory evaluation data and quality of postharvest grapes when treated with the products of strain F17. On the basis of these data and sensory organoleptic qualities, the supernatant containing products from strain F17 had the best potential as a biopreservative to improve the postharvest quality of 'Red Globe' table grapes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA