Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Chemistry ; 29(42): e202301014, 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37195142

RESUMO

O3-type Fe/Mn-based layered oxide cathode materials with abundant reserves have a promising prospect in sodium-ion batteries. However, the electrochemical reversibility of most O3-type Fe/Mn-based oxide cathode materials is still not high enough. Herein, the effect of different Cu contents on the electrochemical properties of O3-NaFe0.50 Mn0.50 O2 materials is systematically investigated. The as-prepared NaFe0.30 Mn0.50 Cu0.20 O2 cathode achieves the synergistic optimization of the interface and bulk phase. It shows superior electrochemical performance, with an initial discharge specific capacity of 114 mAh g-1 at 0.1 C, a capacity retention rate of 94 % after 100 cycles at 0.5 C, and excellent chemical stability in air and water. In addition, the sodium ion full battery based on NaFe0.30 Mn0.50 Cu0.20 O2 cathode and hard carbon anode has a capacity retention rate of 81 % after 100 cycles. This research provides a useful approach for the preparation of low-cost and high-performance O3-type layered cathode materials.

2.
Molecules ; 27(20)2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36296726

RESUMO

Metastasis is an important cause of cancer-related death. Previous studies in our laboratory found that pregnane alkaloids from Pachysandra terminalis had antimetastatic activity against breast cancer cells. In the current study, we demonstrated that treatment with one of the alkaloid derivatives, (Z)-3ß-ethylamino-pregn-17(20)-en (1), led to the downregulation of the HIF-1α/VEGF/VEGFR2 pathway, suppressed the phosphorylation of downstream molecules Akt, mTOR, FAK, and inhibited breast cancer metastasis and angiogenesis both in vitro and in vivo. Furthermore, the antimetastasis and antiangiogenesis effects of 1 treatment (40 mg/kg) were more effective than that of Sorafenib (50 mg/kg). Surface plasmon resonance (SPR) analysis was performed and the result suggested that HSP90α was a direct target of 1. Taken together, our results suggested that compound 1 might represent a candidate antitumor agent for metastatic breast cancer.


Assuntos
Alcaloides , Antineoplásicos , Neoplasias de Mama Triplo Negativas , Humanos , Inibidores da Angiogênese/farmacologia , Inibidores da Angiogênese/uso terapêutico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Sorafenibe/uso terapêutico , Linhagem Celular Tumoral , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/metabolismo , Antineoplásicos/farmacologia , Serina-Treonina Quinases TOR/metabolismo , Alcaloides/farmacologia , Alcaloides/uso terapêutico , Pregnanos/farmacologia , Subunidade alfa do Fator 1 Induzível por Hipóxia
3.
Bioorg Chem ; 115: 105201, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34329994

RESUMO

Breast cancer has become the number one killer of women. In our previous study, an active compound, ION-31a, with potential anti-metastasis activity against breast cancer was identified through the synthesis of ionone alkaloid derivatives. In the present study, we aimed to identify the therapeutic target of ION-31a. We used a fluorescence tag labeled probe, molecular docking simulation, and surface plasmon resonance (SPR) analysis to identify the target of ION-31a. The main target of ION-31a was identified as heat shock protein 90 (HSP90). Thus, ION-31a is a novel HSP90 inhibiter that could suppress the metastasis of breast cancer and angiogenesis significantly in vitro and in vivo. ION-31a acts via inhibiting the HSP90/hypoxia inducible factor 1 alpha (HIF-1α)/vascular endothelial growth factor (VEGF)/VEGF receptor 2 (VEGFR2) pathway and downregulating downstream signal pathways, including protein kinase B (AKT)/mammalian target of rapamycin (mTOR), AKT2/protein kinase C epsilon (PKCζ), extracellular regulated kinase 1/2 (ERK1/2), focal adhesion kinase (FAK), and mitogen-activated protein kinase 14 (p38MAPK) pathways. ION-31a affects multiple effectors implicated in tumor metastasis and has the potential to be developed as an anti-metastatic agent to treat patients with breast cancer.


Assuntos
Alcaloides/farmacologia , Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Norisoprenoides/farmacologia , Alcaloides/síntese química , Alcaloides/química , Antineoplásicos/síntese química , Antineoplásicos/química , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Proteínas de Choque Térmico HSP90/metabolismo , Humanos , Estrutura Molecular , Norisoprenoides/síntese química , Norisoprenoides/química , Relação Estrutura-Atividade , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores , Fator A de Crescimento do Endotélio Vascular/metabolismo
4.
Chemistry ; 26(24): 5341-5346, 2020 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-32056320

RESUMO

In pursuit of high-performance cathode materials for lithium-ion batteries with high energy and power densities, porous LiFe0.4 Mn0.6 PO4 /CNF free-standing electrodes have been successfully prepared through a facile ionic liquid (IL) assisted electrospinning method. Owing to the hierarchical porosity and N-doped carbon layer derived from the ionic liquid, the resulting electrodes exhibited superior electrochemical performances with an improvement of conductivity and pseudocapacitive contribution, delivering a discharge capability of 162.7, 133.5, 114.5, and 102.6 mAh g-1 at the current rates of 0.1, 1, 5, and 10 C, respectively. It is highly expected that this facile IL-assisted electrospinning method will lead to further developments for other phosphate-based free-standing electrodes, which offers a new route in designing polyanionic cathodes for high-performance Li-ion batteries.

5.
Molecules ; 24(9)2019 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-31052152

RESUMO

Layered lithium-rich manganese oxide (LLO) cathode materials have attracted much attention for the development of high-performance lithium-ion batteries. However, they have suffered seriously from disadvantages, such as large irreversible capacity loss during the first cycle, discharge capacity decaying, and poor rate performance. Here, a novel method was developed to coat the surface of 0.4Li2MnO3∙0.6LiNi1/3Co1/3Mn1/3O2 cathode material with reduced graphene-oxide (rGO) in order to address these drawbacks, where a surfactant was used to facilitate the well-wrapping of rGO. As a result, the modified LLO (LLO@rGO) cathode exhibits superior electrochemical performance including cycling stability and rate capability compared to the pristine LLO cathode. In particular, the LLO@rGO with a 0.5% rGO content can deliver a high discharge capacity of 166.3 mAh g-1 at a 5C rate. The novel strategy developed here can provide a vital approach to inhibit the undesired side reactions and structural deterioration of Li-rich cathode materials, and should be greatly useful for other cathode materials to improve their electrochemical performance.


Assuntos
Fontes de Energia Elétrica , Eletrodos , Grafite/química , Lítio/química , Óxidos/química , Íons , Manganês , Microscopia Eletrônica , Pós/química , Análise Espectral
6.
Bioconjug Chem ; 29(2): 437-444, 2018 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-29300459

RESUMO

Small molecule modified anticancer drug conjugates (SMMDCs) can self-assemble into nanoparticles (NPs) as therapeutic NP platforms for cancer treatment. Here we demonstrate that the XlogP and Hansen solubility parameters of paclitaxel (PTX) SMMDCs is essential for SMMDCs self-assembling into NPs. The amorphous state of PTX SMMDCs will also affect SMMDCs self-assembling into NPs. However, the antitumor activity of these PTX SMMDCs NPs decreased along with their XlogP values, indicating that a suitable XlogP value for designing the SMMDCs is important for self-assembling into NPs and for possessing antitumor activity. For higher level XlogP SMMDCs, a degradable linker should be considered in the design of SMMDCs to overcome the problem of lower antitumor activity. It is preferable that the hydrophilic groups in the SMMDCs should be present on the surface of self-assembling NPs.


Assuntos
Antineoplásicos/química , Nanopartículas/química , Paclitaxel/análogos & derivados , Bibliotecas de Moléculas Pequenas/química , Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Sobrevivência Celular/efeitos dos fármacos , Humanos , Interações Hidrofóbicas e Hidrofílicas , Células MCF-7 , Paclitaxel/farmacologia , Bibliotecas de Moléculas Pequenas/farmacologia , Solubilidade
7.
AAPS PharmSciTech ; 19(2): 934-940, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29079988

RESUMO

Here, the mesoporous silica (Sylysia 350) was selected as mesoporous material, hydroxypropyl methylcellulose (HPMC) was selected as crystallization inhibitor, and febuxostat (FBT) was selected as model drug, respectively. The FBT-Sylysia-HPMC nanomatrix (FBT@SHN) was prepared. The characteristics of FBT@SHN were investigated in vitro and in vivo. Our results indicated that the FBT in FBT@SHN was in amorphous form. The solubility and dissolution of FBT in FBT@SHN were significantly increased. The oral bioavailability of FBT in FBT@SHN was greatly improved 5.8-fold compared with that in FBT suspension. This nanomatrix could be used as a drug delivery platform for improving the oral bioavailability.


Assuntos
Febuxostat/química , Febuxostat/metabolismo , Nanoestruturas/química , Polímeros/química , Polímeros/metabolismo , Administração Oral , Animais , Disponibilidade Biológica , Cristalização , Sistemas de Liberação de Medicamentos/métodos , Febuxostat/administração & dosagem , Supressores da Gota/administração & dosagem , Supressores da Gota/química , Supressores da Gota/metabolismo , Derivados da Hipromelose/administração & dosagem , Derivados da Hipromelose/química , Derivados da Hipromelose/metabolismo , Masculino , Metilcelulose/química , Nanoestruturas/administração & dosagem , Polímeros/administração & dosagem , Ratos , Ratos Sprague-Dawley , Dióxido de Silício/administração & dosagem , Dióxido de Silício/química , Dióxido de Silício/metabolismo , Solubilidade
8.
Nanotechnology ; 26(3): 031001, 2015 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-25549152

RESUMO

Libethenite Cu2PO4OH nanocrystals with different morphologies were prepared by an ionic liquid-assisted hydrothermal route, and were further investigated as photocatalysts under visible-light irradiation. The Cu2PO4OH elongated truncated bipyramids exposing {100} facets exhibit superior photocatalytic activity compared to other particles, which can be attributed to the presence of 100% Cu5c atoms on {100} facets. It is highly expect this research can provide a useful fundamental understanding of shape-dependent photocatalytic performance of copper hydroxyphosphate.

9.
Chemistry ; 20(29): 9012-7, 2014 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-24906057

RESUMO

Ionic liquids (ILs) possess effective functions in controlling the phase and morphology of nanomaterials. However, it is still unclear how ILs affect the morphology control and what the origin of adsorption selectivity of ILs is on different crystal facets. It is a challenge to develop a simple method to select the suitable kinds of ILs for achieving the controllable synthesis of nanomaterials with designable shape. Herein, density functional theory (DFT) calculations were combined with experiment to study the interaction mechanism between ILs and crystal facets. An important relationship is proposed, named as the geometric matching principle, in which the adsorption site of substrate should not only need to meet the space requirement for interionic stacking of ILs, but also needs to maximize the interaction between adsorbed ILs and substrate. This new finding is meaningful for prediction of the adsorption selectivity of ILs and clarification of their shape-controlled chemistry.

10.
Eur J Pharmacol ; 965: 176330, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38220139

RESUMO

Pancreatic cancer (PC) is the most frequently occurring cancer, with few effective treatments and a 5-year survival rate of only about 11%. It is characterized by stiff interstitium and pressure on blood vessels, leading to an increased glycolytic metabolism. PFKFB3 plays an important role in glycolysis, and its products (fructose-2,6-bisphosphate), which are allosteric PFK1 activators, limit the glycolytic rate. In this study, 14 PFKFB3 inhibitors were obtained by virtually screening the FDA-approved compound library. Subsequently, the in-vitro investigations confirmed that Lomitapide and Cabozantinib S-malate exhibit the excellent potential to inhibit PFKFB3. The combined administration of Lomitapide and Gemcitabine at a certain molar ratio indicated an enhanced anti-tumor effect in Orthotopic Pancreatic Cancer (OPC) models. This investigation provides a new treatment strategy for PC therapy.


Assuntos
Neoplasias Pancreáticas , Fosfofrutoquinase-2 , Humanos , Fosfofrutoquinase-2/metabolismo , Reposicionamento de Medicamentos , Detecção Precoce de Câncer , Monoéster Fosfórico Hidrolases/metabolismo , Neoplasias Pancreáticas/tratamento farmacológico , Glicólise
11.
Chemistry ; 19(19): 5924-37, 2013 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-23495144

RESUMO

Well-dispersed ammonium aluminum carbonate hydroxide (NH4-Dw) and γ-AlOOH nanostructures with controlled morphologies have been synthesized by employing an ionic-liquid-assisted hydrothermal process. The basic strategies that were used in this work were: 1) A controllable phase transition from NH4-Dw to γ-AlOOH could be realized by increasing the reaction temperature and 2) the morphological evolution of NH4-Dw and γ-AlOOH nanostructures could be influenced by the concentration of the ionic liquid. Based on these experimental results, the main objective of this work was to clarify the effect models of the ionic liquids on the synthesis of NH4-Dw and γ-AlOOH nanostructures, which could be divided into cationic- or anionic-dominant effect models, as determined by the different surface structures of the targets. Specifically, under the cationic-dominant regime, the ionic liquids mainly showed dispersion effects for the NH4-Dw nanostructures, whereas the anionic-dominant model could induce the self-assembly of the γ-AlOOH particles to form hierarchical structures. Under the guidance of the proposed models, the effect of the ionic liquids would be optimized by an appropriate choice of cations or anions, as well as by considering the different effect models with the substrate surface. We expect that such effect models between ionic liquids and the target products will be helpful for understanding and designing rational ionic liquids that contain specific functional groups, thus open up new opportunities for the synthesis of inorganic nanomaterials with new morphologies and improved properties. In addition, these as-prepared NH4-Dw and γ-AlOOH nanostructures were converted into porous γ-Al2O3 nanostructures by thermal decomposition, whilst preserving the same morphology. By using HRTEM and nitrogen-adsorption analysis, the obtained γ-Al2O3 samples were found to have excellent porous properties and, hence, may have applications in catalysis and adsorption.

12.
Chemistry ; 19(22): 7231-42, 2013 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-23553903

RESUMO

In the work presented here, well-dispersed ferric giniite microcrystals with controlled sizes and shapes are solvothermally synthesized from ionic-liquid precursors by using 1-n-butyl-3-methylimidazolium dihydrogenphosphate ([Bmim][H2PO4]) as phosphate source. The success of this synthesis relies on the concentration and composition of the ionic-liquid precursors. By adjusting the molar ratios of Fe(NO3)3·9H2O to [Bmim][H2PO4] as well as the composition of ionic-liquid precursors, we obtained uniform microstructures such as bipyramids exposing {111} facets, plates exposing {001} facets, hollow spheres, tetragonal hexadecahedron exposing {441} and {111} facets, and truncated bipyamids with carved {001} facets. The crystalline structure of the ferric giniite microcrystals is disclosed by various characterization techniques. It was revealed that [Bmim][H2PO4] played an important role in stabilizing the {111} facets of ferric giniite crystals, leading to the different morphologies in the presence of ionic-liquid precursors with different compositions. Furthermore, since these ferric giniite crystals were characterized by different facets, they could serve as model Fenton-like catalysts to uncover the correlation between the surface and the catalytic performance for the photodegradation of organic dyes under visible-light irradiation. Our measurements indicate that the photocatalytic activity of as-prepared Fenton-like catalysts is highly dependent on the exposed facets, and the surface area has essentially no obvious effect on the photocatalytic degradation of organic dyes in the present study. It is highly expected that these findings are useful in understanding the photocatalytic activity of Fenton-like catalysts with different morphologies, and suggest a promising new strategy for crystal-facet engineering of photocatalysts for wastewater treatment based on heterogeneous Fenton-like process.

13.
Phys Chem Chem Phys ; 15(27): 11221-5, 2013 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-23749028

RESUMO

Mesoporous SnO2 with a high surface area of 292.7 m(2) g(-1) has been successfully synthesized via a low-cost NH4Cl-based ionothermal route. When evaluated as a gas sensor, impressive performances towards N2H4 and HCHO are achieved owing to its excellent chemical reactivity towards oxygen.


Assuntos
Cloreto de Amônio/química , Nanoestruturas/química , Oxigênio/química , Temperatura , Compostos de Estanho/síntese química , Amônia/química , Formaldeído/química , Hidrazinas/química , Metanol/química , Oxirredução , Porosidade , Propriedades de Superfície , Compostos de Estanho/química
14.
Chem Commun (Camb) ; 59(36): 5379-5382, 2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-37060128

RESUMO

Ammonium phosphate ((NH4)3PO4) has been first used as a surface treatment reagent for Li-rich cathode materials. Compared to the conventional surface treatment, the samples treated with (NH4)3PO4 exhibit an ultra-high initial Coulomb efficiency of 98.0% and excellent cycling stability. This is mainly attributed to the simultaneous construction of surface integrated structures, including oxygen vacancies, spinel phases, and Li3PO4 coating. This study demonstrates the effectiveness of ammonium phosphate surface treatment and provides a new idea for designing other cathode materials.

15.
Int J Nanomedicine ; 18: 1281-1298, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36945256

RESUMO

Purpose: Chemotherapy is a significant and effective therapeutic strategy that is frequently utilized in the treatment of cancer. Small molecular prodrug-based nanoassemblies (SMPDNAs) combine the benefits of both prodrugs and nanomedicine into a single nanoassembly with high drug loading, increased stability, and improved biocompatibility. Methods: In this study, a disulfide bond inserted 7-ethyl-10-hydroxycamptothecin (SN38) prodrug was rationally designed and then used to prepare nanoassemblies (SNSS NAs) that were selectively activated by rich glutathione (GSH) in the tumor site. The characterization of SNSS NAs and the in vitro and in vivo evaluation of their antitumor effect on a pancreatic cancer model were performed. Results: In vitro findings demonstrated that SNSS NAs exhibited GSH-induced SN38 release and cytotoxicity. SNSS NAs have demonstrated a passive targeting effect on tumor tissues, a superior antitumor effect compared to irinotecan (CPT-11), and satisfactory biocompatibility with double dosage treatment. Conclusion: The SNSS NAs developed in this study provide a new method for the preparation of SN38-based nano-delivery systems with improved antitumor effect and biosafety.


Assuntos
Nanopartículas , Neoplasias Pancreáticas , Pró-Fármacos , Humanos , Pró-Fármacos/química , Liberação Controlada de Fármacos , Irinotecano/farmacologia , Sistemas de Liberação de Medicamentos/métodos , Neoplasias Pancreáticas/tratamento farmacológico , Dissulfetos/química , Linhagem Celular Tumoral , Nanopartículas/química , Camptotecina , Neoplasias Pancreáticas
16.
Adv Sci (Weinh) ; 10(32): e2304067, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37752770

RESUMO

High-capacity O3-type layered sodium oxides are considered one of the most promising cathode materials for the next generation of Na-ion batteries (NIBs). However, these cathodes usually suffer from low high-rate capacity and poor cycling stability due to structure deformation, native air sensitivity, and interfacial side reactions. Herein, a multi-site substituted strategy is employed to enhance the stability of O3-type NaNi0.5 Mn0.5 O2 . Simulations indicate that the Ti substitution decreases the charge density of Ni ions and improves the antioxidative capability of the material. In addition, the synergistic effect of K+ and Ti4+ significantly reduces the formation energy of Na+ vacancy and delivers an ultra-low lattice strain during the repeated Na+ extraction/insertion. In situ characterizations verify that the complicated phase transformation is mitigated during the charge/discharge process, resulting in greatly improved structure stability. The co-substituted cathode delivers a high-rate capacity of 97 mAh g-1 at 5 C and excellent capacity retention of 81% after 400 cycles at 0.5 C. The full cell paired with commercial hard carbon anode also exhibits high capacity and long cycling life. This dual-ion substitution strategy will provide a universal approach for the new rational design of high-capacity cathode materials for NIBs.

17.
Inorg Chem ; 51(2): 914-9, 2012 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-22216835

RESUMO

In this work, a novel lead sulfide (PbS) hierarchical superstructure, denoted as octapodal dendrites with a cubic center, has been synthesized employing a simple single-source precursor route. Our experimental results demonstrate that the novel hierarchical superstructure was generated through the delicate balance between the kinetic growth and thermodynamic growth regimes. Moreover, the morphology of PbS crystals can be controlled by adjusting the solvent under a thermodynamically or kinetically controlled growth regime. It is highly expected that these findings will be useful in understanding the formation of PbS nanocrystals with different morphologies, which are also applicable to other face-centered cubic nanocrystals.

18.
Nanomaterials (Basel) ; 12(10)2022 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-35630983

RESUMO

Photocatalytic production from water is considered an effective solution to fossil fuel-related environmental concerns, and photocatalyst surface science holds a significant interest in balancing photocatalysts' stability and activity. We propose a plasma-wind method to tune the surface properties of a photocatalyst with an amorphous structure. Theoretical calculation shows that the amorphous surface structure can cause an unsaturated coordination environment to adjust the electron distribution, forming more adsorption sites. Thus, the photocatalyst with a crystal-amorphous (C-A) interface can strengthen light absorption, harvest photo-induced electrons, and enrich the active sites, which help improve hydrogen yield. As a proof of concept, with indium sulfide (In2S3) nanosheets used as the catalyst, an impressive hydrogen production rate up to 457.35 µmol cm-2 h-1 has been achieved. Moreover, after plasma-assisted treatment, In2S3 with a C-A interface can produce hydrogen from water under natural outdoor conditions. Following a six-hour test, the rate of photocatalytic hydrogen evolution is found to be 400.50 µmol cm-2 g-1, which demonstrates that a catalyst prepared through plasma treatment is both effective and highly practical.

19.
Drug Deliv ; 28(1): 800-813, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33866918

RESUMO

Cancer immunotherapy is a strategy that is moving to the frontier of cancer treatment in the current decade. In this study, we show evidence that 3-(2-nitrophenyl) propionic acid-paclitaxel nanoparticles (NPPA-PTX NPs), act as immunogenic cell death (ICD) inducers, stimulating an antitumor response which results in synergistic antitumor activity by combining anti-PD-L1 antibody (aPD-L1) in vivo. To investigate the antitumor immunity induced by NPPA-PTX NPs, the expression of both ICD marker calreticulin (CRT) and high mobility group box 1 (HMGB1) were analyzed. In addition, the antitumor activity of NPPA-PTX NPs combined with aPD-L1 in vivo was also investigated. The immune response was also measured through quantitation of the infiltration of T cells and the secretion of pro-inflammatory cytokines. The results demonstrate that NPPA-PTX NPs induce ICD of MDA-MB-231 and 4T1 cells through upregulation of CRT and HMGB1, reactivating the antitumor immunity via recruitment of infiltrating CD3+, CD4+, CD8+ T cells, secreting IFN-γ, TNF-α, and the enhanced antitumor activity by combining with aPD-L1. These data suggest that the combined therapy has a synergistic antitumor activity and has the potential to be developed into a novel therapeutic regimen for cancer patients.


Assuntos
Albuminas/farmacologia , Antineoplásicos/farmacologia , Morte Celular Imunogênica/efeitos dos fármacos , Mediadores da Inflamação/metabolismo , Nanopartículas/química , Paclitaxel/farmacologia , Albuminas/administração & dosagem , Animais , Antineoplásicos/administração & dosagem , Antígeno B7-H1/imunologia , Calreticulina/efeitos dos fármacos , Linhagem Celular Tumoral , Feminino , Proteína HMGB1/efeitos dos fármacos , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Paclitaxel/administração & dosagem , Propionatos/química , Regulação para Cima , Ensaios Antitumorais Modelo de Xenoenxerto
20.
Chemistry ; 16(44): 13210-7, 2010 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-20931571

RESUMO

The size- and shape-controlled synthesis of Sb(2)S(3) nanostructures has been successfully realized by a facile hydrothermal route. A range of dimensional nanostructures, such as one-dimensional nanorods, two-dimensional nanowire bundles, three dimensional sheaf-like superstructures, dumbbell-shaped superstructures, and urchin-like microspheres, could be obtained through introducing different organic complex reagents or ionic liquids to the reaction system. The formation mechanisms of various Sb(2)S(3) nanostructures have been rationally proposed based on the crystal structure and the nature of the complex reagents and the ionic liquid. The effects of experimental parameters on the final product are also discussed in detail. In addition, electrochemical measurements demonstrate that the as-synthesized Sb(2)S(3) nanostructures have higher initial Li intercalation capacity and excellent cyclic performances, which indicates that the as-synthesized Sb(2)S(3) nanostructures could have potential applications in commercial batteries.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA