Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Electrophoresis ; 41(18-19): 1641-1650, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32726462

RESUMO

This study describes an inexpensive and nonconventional soft-embossing protocol to produce microfluidic devices in poly(methyl methacrylate) (PMMA). The desirable microfluidic structure was photo-patterned in a poly(vinyl acetate) (PVAc) film deposited on glass substrate to produce a low-relief master. Then, this template was used to generate a high-relief pattern in stiffened PDMS by increasing of curing agent /monomer ratio (1:5) followed by thermal aging in a laboratory oven (200°C for 24 h). The stiffened PDMS masters were used to replicate microfluidic devices in PMMA based on soft embossing at 220-230°C and thermal sealing at 140°C. Both embossing and sealing stages were performed by using binder clips. The proposed protocol has ensured the replication of microfluidic devices in PMMA with great fidelity (>94%). Examples of MCE devices, droplet generator devices and spot test array were successfully demonstrated. For testing MCE devices, a mixture containing inorganic cations was selected as model and the achieved analytical performance did not reveal significant difference from commercial PMMA devices. Water droplets were successfully generated in an oil phase at rate of ca. 60 droplets/min (fixing the continuous phase flow rate at 100 µL/h) with size of ca. 322 ± 6 µm. Glucose colorimetric assay was performed on spot test devices and good detectability level (5 µmol/L) was achieved. The obtained results for two artificial serum samples revealed good agreement with the certified concentrations. Based on the fabrication simplicity and great analytical performance, the proposed soft-embossing protocol may emerge as promising approach for manufacturing PMMA devices.


Assuntos
Desenho de Equipamento/métodos , Dispositivos Lab-On-A-Chip , Procedimentos Analíticos em Microchip/métodos , Polimetil Metacrilato/química , Glicemia/análise , Colorimetria/instrumentação , Eletroforese/instrumentação , Temperatura Alta , Limite de Detecção , Modelos Lineares , Modelos Biológicos , Reprodutibilidade dos Testes
2.
Anal Bioanal Chem ; 411(19): 4919-4928, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30941478

RESUMO

Microfluidic paper-based devices (µPADs) and wearable devices have been highly studied to be used as diagnostic tools due to their advantages such as simplicity and ability to provide instrument-free fast results. Diseases such as periodontitis and diabetes mellitus can potentially be detected through these devices by the detection of important biomarkers. This study describes the development of µPADs through craft cutter printing for glucose and nitrite salivary diagnostics. In addition, the use of µPADs integrated into a mouthguard as a wearable sensor for glucose monitoring is also presented. µPADs were designed to contain two detection zones for glucose and nitrite assays and a sampling zone interconnected by microfluidic channels. Initially, the analytical performance of the proposed µPADs was investigated and it provided linear behavior (r2 ≥ 0.994) in the concentration ranges between 0 to 2.0 mmol L-1 and 0 to 400 µmol L-1 for glucose and nitrite, respectively. Under the optimized conditions, the limits of detection achieved for glucose and nitrite were 27 µmol L-1 and 7 µmol L-1, respectively. Human saliva samples were collected from healthy individuals and patients previously diagnosed with periodontitis or diabetes and then analyzed on the proposed µPADs. The results found using µPADs revealed higher glucose concentration values in saliva collected from patients diagnosed with diabetes mellitus and greater nitrite concentrations in saliva collected from patients diagnosed with periodontitis, as expected. The results obtained on µPADs did not differ statistically from those measured by spectrophotometry. With the aim of developing paper-based wearable sensors, µPADs were integrated, for the first time, into a silicone mouthguard using a 3D-printed holder. The proof of concept was successfully demonstrated through the monitoring of the glucose concentration in saliva after the ingestion of chocolate. According to the results reported herein, paper-based microfluidic devices offer great potential for salivary diagnostics, making their integration into a silicone mouthguard possible, generating simple, low-cost, instrument-free, and powerful wearable sensors.


Assuntos
Glucose/metabolismo , Técnicas Analíticas Microfluídicas/instrumentação , Saliva/metabolismo , Dispositivos Eletrônicos Vestíveis , Estudos de Casos e Controles , Colorimetria/métodos , Diabetes Mellitus/metabolismo , Humanos , Limite de Detecção , Nitritos/metabolismo , Papel , Periodontite/metabolismo , Estudo de Prova de Conceito , Reprodutibilidade dos Testes
3.
Anal Chim Acta ; 1299: 342429, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38499426

RESUMO

3D printing has revolutionized the manufacturing process of microanalytical devices by enabling the automated production of customized objects. This technology promises to become a fundamental tool, accelerating investigations in critical areas of health, food, and environmental sciences. This microfabrication technology can be easily disseminated among users to produce further and provide analytical data to an interconnected network towards the Internet of Things, as 3D printers enable automated, reproducible, low-cost, and easy fabrication of microanalytical devices in a single step. New functional materials are being investigated for one-step fabrication of highly complex 3D printed parts using photocurable resins. However, they are not yet widely used to fabricate microfluidic devices. This is likely the critical step towards easy and automated fabrication of sophisticated, complex, and functional 3D-printed microchips. Accordingly, this review covers recent advances in the development of 3D-printed microfluidic devices for point-of-care (POC) or bioanalytical applications such as nucleic acid amplification assays, immunoassays, cell and biomarker analysis and organs-on-a-chip. Finally, we discuss the future implications of this technology and highlight the challenges in researching and developing appropriate materials and manufacturing techniques to enable the production of 3D-printed microfluidic analytical devices in a single step.


Assuntos
Microtecnologia , Impressão Tridimensional , Sistemas Automatizados de Assistência Junto ao Leito , Dispositivos Lab-On-A-Chip
4.
Lab Chip ; 24(3): 467-479, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38126917

RESUMO

Multiple protocols have been reported to fabricate paper-based analytical devices (PADs). However, some of these techniques must be revised because of the instrumentation required. This paper describes a versatile and globally affordable method to fabricate PADs using office paper as a substrate and a laser printing technique to define hydrophobic barriers on paper surfaces. To demonstrate the feasibility of the alternatives proposed in this study, the fabrication of devices for three types of detection commonly associated with using PADs was demonstrated: colorimetric detection, electrochemical detection, and mass spectrometry associated with a paper-spray ionization (PSI-MS) technique. Besides that, an evaluation of the type of paper used and chemical modifications required on the substrate surface are also presented in this report. Overall, the developed protocol was suitable for using office paper as a substrate, and the laser printing technique as an efficient fabrication method when using this substrate is accessible at a resource-limited point-of-need. Target analytes were used as a proof of concept for these detection techniques. Colorimetric detection was carried out for acetaminophen, iron, nitrate, and nitrite with limits of detection of 0.04 µg, 4.5 mg mL-1, 2.7 µmol L-1, and 6.8 µmol L-1, respectively. A limit of detection of 0.048 fg mL-1 was obtained for the electrochemical analysis of prostate-specific antigen. Colorimetric and electrochemical devices revealed satisfactory performance when office paper with a grammage of 90 g m-2 was employed. Methyldopa analysis was also carried out using PSI-MS, which showed a good response in the same paper weight and behavior compared to chromatographic paper.

5.
Anal Methods ; 16(1): 74-82, 2023 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-38073521

RESUMO

This study presents the development of a polyester microplate for detecting the S-protein of the SARS-CoV-2 virus in saliva and nasopharyngeal swab samples using direct enzyme-linked immunosorbent assay (ELISA) technology. The polyester microplate was designed to contain 96 zones with a 3 mm diameter each, and a volume of 2-3 µL. The experimental conditions including reagent concentration and reaction time were optimized. The microplate image was digitized and analyzed using graphical software. The linear range obtained between protein S concentrations and pixel intensity was 0-10 µg mL-1, with a correlation coefficient of 0.99 and a limit of detection of 0.44 µg mL-1. The developed methodology showed satisfactory intraplate and interplate repeatability with RSD values lower than 7.8%. The results achieved through immunoassay performed on polyester microplates were consistent with those of the RT-PCR method and showed a sensitivity of 100% and 90% and specificity of 85.71% and 100% for saliva and nasopharyngeal samples, respectively. The proposed direct immunoassay on polyester microplates emerges as an alternative to conventional immunoassays performed on commercial polystyrene plates, given the low cost of the device, low consumption of samples and reagents, lower waste generation, and shorter analysis time. Moreover, the immunoassay has shown great potential for diagnosing COVID-19 with precision and accuracy.


Assuntos
COVID-19 , Saliva , Humanos , Glicoproteína da Espícula de Coronavírus , Colorimetria , COVID-19/diagnóstico , Imunoensaio
6.
Anal Chim Acta ; 1190: 339252, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34857139

RESUMO

3D printing is a technology that has revolutionized traditional rapid prototyping methods due to its ability to build microscale structures with customized geometries in a simple, fast, and low-cost way. In this sense, this article describes the development of a microfluidic mixing device to monitor chemical reactions by mass spectrometry (MS). Microfluidic mixers were designed containing 3D serpentine and Y-shaped microchannels, both with a pointed end for facilitating the spray formation. The devices were fabricated entirely by 3D printing with fusion deposition modeling (FDM) technology. As proof-of-concept, micromixers were evaluated through monitoring the Katritzky reaction by injecting simultaneously 2,4,6-triphenylpropyllium (TPP) and amino acid (glycine or alanine) solutions, each through a different reactor inlet. Reaction product was monitored online by MS at different flow rates. Mass spectra showed that the relative abundances of the products obtained with the device containing the 3D serpentine channel were three times greater than those obtained with the Y-channel device due to the turbulence generated by the barriers created inside microchannels. In addition, when compared to the conventional electrospray ionization mass spectrometry (ESI-MS) technique, the 3D serpentine mixer offered better performance measured in relation to the relative abundance values for the reaction products. These results as well as the instrumental simplicity indicate that 3D printed microfluidic mixer is a promising tool for monitoring organic reactions via MS.


Assuntos
Dispositivos Lab-On-A-Chip , Microfluídica , Impressão Tridimensional , Espectrometria de Massas por Ionização por Electrospray
7.
Talanta ; 232: 122408, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34074398

RESUMO

This study describes the development of a new electrochemical paper-based analytical device (ePAD) on alumina sandpaper substrate through a pencil-drawing process for square wave voltammetry measurements of midazolam maleate used as a "date rape drug" in beverages. The proposed ePAD was assembled on a reusable 3D printed holder to delimit its geometric area and ensure better robustness. The ePAD was characterized by scanning electron microscopy, cyclic voltammetry, electrochemical impedance spectroscopy and Raman spectroscopy. The direct drawing of ePADs on sandpaper platforms through a graphite pencil has offered suitable repeatability (RSD = 1.0%) and reproducibility (RSD = 4.0%) using [Fe(CN)6]4- as redox probe. The proposed ePAD provided linear behaviour in the midazolam maleate concentration range between 2.5 and 150 mg L-1 and a limit of detection of 2.0 mg L-1. The feasibility of the ePAD for forensic application was successfully demonstrated through the detection of midazolam in different beverages (water, beer, liquor, and vodka). The intended application revealed low interference of other compounds present in beverages. Based on the achieved results, the proposed ePAD has offered great accuracy with no statistical difference at 95% confidence level from the data recorded by high performance liquid chromatography. The operational simplicity and the robustness ensured by the assembling on a reusable 3D printed holder make the ePAD drawn on sandpaper platform a powerful and promising analytical tool for the analysis of "date rape drugs" opening new possibilities for on-site forensic investigations.


Assuntos
Grafite , Preparações Farmacêuticas , Estupro , Bebidas , Técnicas Eletroquímicas , Eletrodos , Impressão Tridimensional , Reprodutibilidade dos Testes
8.
Anal Chim Acta ; 1071: 36-43, 2019 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-31128753

RESUMO

This study describes for the first time the development of 3D printed microfluidic devices with integrated electrodes for label-free counting of E. coli cells incorporated inside droplets based on capacitively coupled contactless conductivity detection (C4D). Microfluidic devices were fully fabricated by 3D printing in the T-junction shape containing two channels for disperse and continuous phases and two sensing electrodes for C4D measurements. The disperse phase containing E. coli K12 cells and the continuous phase containing oil and 1% Span® 80 were pumped through flow rates fixed at 5 and 60 µL min-1, respectively. The droplets with incorporated cells were monitored in the C4D system applying a 500-kHz sinusoidal wave with 1 Vpp amplitude. The generated droplets exhibited a spherical shape with average diameter of 321 ±â€¯9 µm and presented volume of 17.3 ±â€¯0.5 nL. The proposed approach demonstrated ability to detect E. coli cells in the concentration range between 86.5 and 8650 CFU droplet-1. The number of cells per droplet was quantified through the plate counting method and revealed a good agreement with the Poisson distribution. The limit of detection achieved for counting E. coli cells was 63.66 CFU droplet-1. The label-free counting method has offered instrumental simplicity, low cost, high sensitivity and compatibility to be integrated on single microfluidic platforms entirely fabricated by 3D printing, thus opening new possibilities of applications in microbiology.


Assuntos
Contagem de Células/métodos , Condutividade Elétrica , Técnicas Eletroquímicas/métodos , Escherichia coli K12/isolamento & purificação , Dispositivos Lab-On-A-Chip , Técnicas Analíticas Microfluídicas/métodos , Técnicas Eletroquímicas/instrumentação , Eletrodos , Limite de Detecção , Técnicas Analíticas Microfluídicas/instrumentação , Impressão Tridimensional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA