Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Hippocampus ; 31(9): 957-981, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34002905

RESUMO

The encoding of spatial representations is enabled by synaptic plasticity. The entorhinal cortex sends information to the hippocampus via the lateral (LPP) and medial perforant (MPP) paths that transfer egocentric item-related and allocentric spatial information, respectively. To what extent LPP and MPP information-relay results in different homosynaptic synaptic plasticity responses is unclear. We examined the frequency dependency (at 1, 5, 10, 50, 100, 200 Hz) of long-term potentiation (LTP) and long-term depression (LTD) at MPP and LPP synapses in the dentate gyrus (DG) of freely behaving adult rats. We report that whereas the MPP-DG synapses exhibit a predisposition toward the expression of LTP, LPP-DG synapses prefer to express synaptic depression. The divergence of synaptic plasticity responses is most prominent at afferent frequencies of 5, 100, Hz and 200 Hz. Priming with 10 or 50 Hz significantly modified the subsequent plasticity response in a frequency-dependent manner, but failed to change the preferred direction of change in synaptic strength of MPP and LPP synapses. Evaluation of the expression of GluN1, GluN2A, or GluN2B subunits of the NMDA receptor revealed equivalent expression in the outer and middle thirds of the molecular layer where LPP and MPP inputs convene, respectively, thus excluding NMDA receptors as a substrate for the frequency-dependent differences in bidirectional plasticity. These findings demonstrate that the LPP and MPP inputs to the DG enable differentiated and distinct forms of synaptic plasticity in response to the same afferent frequencies. Effects are extremely robust and resilient to metaplastic priming. These properties may support the functional differentiation of allocentric and item information provided to the DG by the MPP and LPP, respectively, that has been proposed by others. We propose that allocentric spatial information, conveyed by the MPP is encoded through hippocampal LTP in a designated synaptic network. This network is refined and optimized to include egocentric contextual information through LTD triggered by LPP inputs.


Assuntos
Depressão , Via Perfurante , Animais , Giro Denteado/fisiologia , Potenciação de Longa Duração/fisiologia , Ratos , Sinapses/fisiologia
2.
Hippocampus ; 28(2): 136-150, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29171922

RESUMO

The dorsoventral axis of the hippocampus exhibits functional differentiations with regard to (spatial Vs emotional) learning and information retention (rapid encoding Vs long-term storage), as well as its sensitivity to neuromodulation and information received from extrahippocampal structures. The mechanisms that underlie these differentiations remain unclear. Here, we explored neurotransmitter receptor expression along the dorsoventral hippocampal axis and compared hippocampal synaptic plasticity in the CA1 region of the dorsal (DH), intermediate (IH) and ventral hippocampi (VH). We observed a very distinct gradient of expression of the N-methyl-D-aspartate receptor GluN2B subunit in the Stratum radiatum (DH< IH< VH). A similar distribution gradient (DH< IH< VH) was evident in the hippocampus for GluN1, the metabotropic glutamate receptors mGlu1 and mGlu2/3, GABAB and the dopamine-D1 receptor. GABAA exhibited the opposite expression relationship (DH > IH > VH). Neurotransmitter release probability was lowest in DH. Surprisingly, identical afferent stimulation conditions resulted in hippocampal synaptic plasticity that was the most robust in the DH, compared with IH and VH. These data suggest that differences in hippocampal information processing and synaptic plasticity along the dorsoventral axis may relate to specific differences in the expression of plasticity-related neurotransmitter receptors. This gradient may support the fine-tuning and specificity of hippocampal synaptic encoding.


Assuntos
Hipocampo/fisiologia , Rede Nervosa/fisiologia , Plasticidade Neuronal/fisiologia , Receptores de Neurotransmissores/metabolismo , Análise de Variância , Animais , Estimulação Elétrica , Hipocampo/citologia , Técnicas In Vitro , Masculino , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Neurotransmissores/metabolismo , Técnicas de Patch-Clamp , Células Piramidais/efeitos dos fármacos , Células Piramidais/fisiologia , Ratos , Ratos Wistar
3.
Front Behav Neurosci ; 13: 98, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31139061

RESUMO

Psychosis is a clinical state that encompasses a range of abnormal conditions, including distortions in sensory information processing and the resultant delusional thinking, emotional discordance and cognitive impairments. Upon developing this condition, the rate at which cognitive and behavioral deteriorations progress steadily increases suggesting an active contribution of the first psychotic event to the progression of structural and functional abnormalities and disease establishment in diagnosed patients. Changes in GABAergic and glutamatergic function, or expression, in the hippocampus have been proposed as a key factor in the pathophysiology of psychosis. However, little is known as to the time-point of onset of putative changes, to what extent they are progressive, and their relation to disease stabilization. Here, we characterized the expression and distribution patterns of groups I and II metabotropic glutamate (mGlu) receptors and GABA receptors 1 week and 3 months after systemic treatment with an N-methyl-D-aspartate receptor (NMDAR) antagonist (MK801) that is used to model a psychosis-like state in adult rats. We found an early alteration in the expression of mGlu1, mGlu2/3, and GABAB receptors across the hippocampal dorsoventral and transverse axes. This expanded to include an up-regulation of mGlu5 levels across the entire CA1 region and a reduction in GABAB expression, as well as GAD67-positive interneurons particularly in the dorsal hippocampus that appeared 3 months after treatment. Our findings indicate that a reduction of excitability may occur in the hippocampus soon after first-episode psychosis. This changes, over time, into increased excitability. These hippocampus-specific alterations are likely to contribute to the pathophysiology and stabilization of psychosis.

4.
Artigo em Inglês | MEDLINE | ID: mdl-31680927

RESUMO

Dopamine D2-like receptors (D2R) play an important role in the regulation of hippocampal neuronal excitability and contribute to the regulation of synaptic plasticity, the encoding of hippocampus-dependent memories and the regulation of affective state. In line with this, D2R are targeted in the treatment of psychosis and affective disorders. It has been proposed that the dorso-ventral axis of the hippocampus can be functionally delineated into the dorsal pole that predominantly processes spatial information and the ventral pole that mainly addresses hippocampal processing of emotional and affective state. Although dopaminergic control of hippocampal information processing has been the focus of a multitude of studies, very little is known about the precise distribution of D2R both within anatomically defined sublayers of the hippocampus and along its dorsoventral axis, that could in turn yield insights as to the functional significance of this receptor in supporting hippocampal processing of spatial and affective information. Here, we used an immunohistochemical approach to precisely scrutinize the protein expression of D2R both within the cellular and dendritic layers of the hippocampal subfields, and along the dorso-ventral hippocampal axis. In general, we detected significantly higher levels of protein expression of D2R in the ventral, compared to the dorsal poles with regard to the CA1, CA2, CA3 and dentate gyrus (DG) regions. Effects were very consistent: the molecular layer, granule cell layer and polymorphic layer of the DG exhibited higher D2R levels in the ventral compared to dorsal hippocampus. D2R levels were also significantly higher in the ventral Stratum oriens, Stratum radiatum, and Stratum lacunosum-moleculare layers of the CA1 and CA3 regions. The apical dendrites of the ventral CA2 region also exhibited higher D2R expression compared to the dorsal pole. Taken together, our study suggests that the higher D2R expression levels of the ventral hippocampus may contribute to reported gradients in the degree of expression of synaptic plasticity along the dorso-ventral hippocampal axis, and may support behavioral information processing by the ventral hippocampus.

5.
ACS Chem Neurosci ; 9(9): 2241-2251, 2018 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-29634239

RESUMO

Psychosis is a mental condition that is characterized by hallucinations, delusions, disordered thought, as well as socio-emotional and cognitive impairments. Once developed, it tends to progress into a chronic psychotic illness. Here, the duration of untreated psychosis plays a crucial role: the earlier the treatment begins, relative to the first episode of the disease, the better the patient's functional prognosis. To what extent the success of early interventions relate to progressive changes at the neurotransmitter receptor level is as yet unclear. In fact, very little is known as to how molecular changes develop, transform, and become established following the first psychotic event. One neurotransmitter receptor for which a specific role in psychosis has been discussed is the N-methyl-d-aspartate receptor (NMDAR). This receptor is especially important for information encoding in the hippocampus. The hippocampus is one of the loci of functional change in psychosis, to which a role in the pathophysiology of psychosis has been ascribed. Here, we examined whether changes in NMDAR subunit expression occur along the dorsoventral axis of the hippocampus 1 week and 3 months after systemic treatment with an NMDAR antagonist (MK801) that initiates a psychosis-like state in adult rats. We found early (1 week) upregulation of the GluN2B levels in the dorso-intermediate hippocampus and late (3 month) downregulation of GluN2A expression across the entire CA1 region. The ventral hippocampus did not exhibit subunit expression changes. These data suggest that a differing vulnerability of the hippocampal longitudinal axis may occur in response to MK801-treatment and provide a time-resolved view of the putative development of pathological changes of NMDAR subunit expression in the hippocampus that initiate with an emulated first episode and progress through to the chronic stabilization of a psychosis-like state in rodents.


Assuntos
Maleato de Dizocilpina/farmacologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Hipocampo/efeitos dos fármacos , Psicoses Induzidas por Substâncias/metabolismo , Receptores de N-Metil-D-Aspartato/efeitos dos fármacos , Animais , Modelos Animais de Doenças , Hipocampo/metabolismo , Psicoses Induzidas por Substâncias/etiologia , Transtornos Psicóticos/metabolismo , Ratos , Receptores de N-Metil-D-Aspartato/metabolismo , Fatores de Tempo , Regulação para Cima
6.
Transl Psychiatry ; 8(1): 255, 2018 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-30487639

RESUMO

Stress elicits the release of glucocorticoids (GCs) that regulate energy metabolism and play a role in emotional memory. Astrocytes express glucocorticoid receptors (GR), but their contribution to cognitive effects of GC's action in the brain is unknown. To address this question, we studied how astrocyte-specific elimination of GR affects animal behavior known to be regulated by stress. Mice with astrocyte-specific ablation of GR presented impaired aversive memory expression in two different paradigms of Pavlovian learning: contextual fear conditioning and conditioned place aversion. These mice also displayed compromised regulation of genes encoding key elements of the glucose metabolism pathway upon GR stimulation. In particular, we identified that the glial, but not the neuronal isoform of a crucial stress-response molecule, Sgk1, undergoes GR-dependent regulation in vivo and demonstrated the involvement of SGK1 in regulation of glucose uptake in astrocytes. Together, our results reveal astrocytes as a central element in GC-dependent formation of aversive memory and suggest their relevance for stress-induced alteration of brain glucose metabolism. Consequently, astrocytes should be considered as a cellular target of therapies of stress-induced brain diseases.


Assuntos
Astrócitos/metabolismo , Comportamento Animal/fisiologia , Condicionamento Clássico/fisiologia , Medo/fisiologia , Memória/fisiologia , Nociceptividade/fisiologia , Receptores de Glucocorticoides/metabolismo , Transdução de Sinais/fisiologia , Estresse Psicológico/metabolismo , Animais , Proteínas Imediatamente Precoces/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Proteínas Serina-Treonina Quinases/metabolismo
7.
Front Behav Neurosci ; 9: 117, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26042007

RESUMO

Psychosis is accompanied by severe attentional deficits, and impairments in associational-memory processing and sensory information processing that are ascribed to dysfunctions in prefrontal and hippocampal function. Disruptions of glutamatergic signaling may underlie these alterations: Antagonism of the N-methyl-D-aspartate receptor (NMDAR) results in similar molecular, cellular, cognitive and behavioral changes in rodents and/or humans as those that occur in psychosis, raising the question as to whether changes in glutamatergic transmission may be intrinsic to the pathophysiology of the disease. In an animal model of psychosis that comprises treatment with the irreversible NMDAR-antagonist, MK801, we explored the cellular mechanisms that may underlie hippocampal dysfunction in psychosis. MK801-treatment resulted in a profound loss of hippocampal LTP that was evident 4 weeks after treatment. Whereas neuronal expression of the immediate early gene, Arc, was enhanced in the hippocampus by spatial learning in controls, MK801-treated animals failed to show activity-dependent increases in Arc expression. By contrast, a significant increase in basal Arc expression in the absence of learning was evident compared to controls. Paired-pulse (PP) facilitation was increased at the 40 ms interval indicating that NMDAR and/or fast GABAergic-mediated neurotransmission was disrupted. In line with this, MK801-treatment resulted in a significant decrease in GABA(A), and increase in GABA(B)-receptor-expression in PFC, along with a significant increase of GABA(B)- and NMDAR-GluN2B expression in the dentate gyrus. NMDAR-GluN1 or GluN2A subunit expression was unchanged. These data suggest that in psychosis, deficits in hippocampus-dependent memory may be caused by a loss of hippocampal LTP that arises through enhanced hippocampal neuronal excitability, altered GluN2B and GABA receptor expression and an uncoupling of the hippocampus-prefrontal cortex circuitry.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA