Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Genet Sel Evol ; 54(1): 71, 2022 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-36309651

RESUMO

BACKGROUND: The palate is a structure separating the oral and nasal cavities and its integrity is essential for feeding and breathing. The total or partial opening of the palate is called a cleft palate and is a common malformation in mammals with environmental or hereditary aetiologies. Generally, it compromises life expectancy in the absence of surgical repair. A new form of non-syndromic cleft palate arose recently in Limousine cattle, with animals referred to the French National Observatory of Bovine Abnormalities since 2012. Since the number of affected animals has increased steadily, this study was undertaken to identify the cause of this disease. RESULTS: Based on pedigree analysis, occurrence of cleft palate in Limousine cattle was concordant with an autosomal recessive mode of inheritance. Genotyping of 16 affected animals and homozygosity mapping led to the identification of a single disease-associated haplotype on Bos taurus chromosome (BTA)19. The genome of two affected animals was sequenced, and their sequences were compared to the ARS-UCD1.2 reference genome to identify variants. The likely causal variants were compared to the variant database of the 1000 bull genome project and two fully linked mutations in exon 24 of the MYH3 (myosin heavy chain) gene were detected: a 1-bp non-synonymous substitution (BTA19:g.29609623A>G) and a 11-bp frameshift deletion (BTA19:g.29609605-29609615del). These two mutations were specific to the Limousine breed, with an estimated allele frequency of 2.4% and are predicted to be deleterious. The frameshift leads to a premature termination codon. Accordingly, mRNA and protein analyses in muscles from wild-type and affected animals revealed a decrease in MYH3 expression in affected animals, probably due to mRNA decay, as well as an absence of the MYH3 protein in these animals. MYH3 is mostly expressed in muscles, including craniofacial muscles, during embryogenesis, and its absence may impair palate formation. CONCLUSIONS: We describe a new form of hereditary cleft palate in Limousine cattle. We identified two fully linked and deleterious mutations, ultimately leading to the loss-of-function of the MYH3 protein. The mutations were included on the Illumina EuroG10k v8 and EuroGMD v1 SNP chips and are used to set up a reliable eradication strategy in the French Limousine breed.


Assuntos
Fissura Palatina , Bovinos/genética , Animais , Masculino , Fissura Palatina/genética , Fissura Palatina/veterinária , Linhagem , Mutação , Mutação da Fase de Leitura , Haplótipos , Mamíferos/genética
2.
Biochem Biophys Res Commun ; 551: 1-6, 2021 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-33713980

RESUMO

Shadoo and PrP belongs to the same protein family, whose biological function remains poorly understood. Previous experiments reported potential functional redundancies or antagonisms between these two proteins, depending on the tissue analysed. While knockdown experiments suggested the requirement of Shadoo in the absence of PrP during early mouse embryogenesis, knockout ones, on the contrary, highlighted little impact, if any, of the double-knockout of these two loci. In the present study, we reinvestigated the phenotype associated with the concomitant knockout of these two genes using newly produced FVB/N Sprn knockout mice. In this genetic background, the combined two genes' knockout induces intra-uterine growth retardations, likely resulting from placental failures highlighted by transcriptomic analyses that revealed potential redundant or antagonist roles of these two proteins in different developmental-related pathways. It also induced an increased perinatal-lethality and ascertained the role of these two loci in the lactation process.


Assuntos
Proteínas do Tecido Nervoso/metabolismo , Proteínas Priônicas/metabolismo , Reprodução/fisiologia , Animais , Animais Recém-Nascidos/crescimento & desenvolvimento , Desenvolvimento Embrionário , Feminino , Proteínas Ligadas por GPI , Genes Letais , Lactação/genética , Lactação/fisiologia , Masculino , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Proteínas do Tecido Nervoso/deficiência , Proteínas do Tecido Nervoso/genética , Fenótipo , Placentação , Gravidez , Proteínas Priônicas/deficiência , Proteínas Priônicas/genética , Reprodução/genética , Transcriptoma
3.
PLoS Genet ; 14(8): e1007550, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30067756

RESUMO

Hereditary spastic paraplegias (HSPs) are clinically and genetically heterogeneous human neurodegenerative diseases. Amongst the identified genetic causes, mutations in genes encoding motor proteins such as kinesins have been involved in various HSP clinical isoforms. Mutations in KIF1C are responsible for autosomal recessive spastic paraplegia type 58 (SPG58) and spastic ataxia 2 (SPAX2). Bovines also develop neurodegenerative diseases, some of them having a genetic aetiology. Bovine progressive ataxia was first described in the Charolais breed in the early 1970s in England and further cases in this breed were subsequently reported worldwide. We can now report that progressive ataxia of Charolais cattle results from a homozygous single nucleotide polymorphism in the coding region of the KIF1C gene. In this study, we show that the mutation at the heterozygous state is associated with a better score for muscular development, explaining its balancing selection for several decades, and the resulting high frequency (13%) of the allele in the French Charolais breed. We demonstrate that the KIF1C bovine mutation leads to a functional knock-out, therefore mimicking mutations in humans affected by SPG58/SPAX2. The functional consequences of KIF1C loss of function in cattle were also histologically reevaluated. We showed by an immunochemistry approach that demyelinating plaques were due to altered oligodendrocyte membrane protrusion, and we highlight an abnormal accumulation of actin in the core of demyelinating plaques, which is normally concentrated at the leading edge of oligodendrocytes during axon wrapping. We also observed that the lesions were associated with abnormal extension of paranodal sections. Moreover, this model highlights the role of KIF1C protein in preserving the structural integrity and function of myelin, since the clinical signs and lesions arise in young-adult Charolais cattle. Finally, this model provides useful information for SPG58/SPAX2 disease and other demyelinating lesions.


Assuntos
Doenças dos Bovinos/genética , Bovinos/genética , Cinesinas/metabolismo , Bainha de Mielina/metabolismo , Degenerações Espinocerebelares/veterinária , Sequência de Aminoácidos , Animais , Doenças dos Bovinos/diagnóstico , Modelos Animais de Doenças , Feminino , Heterozigoto , Homozigoto , Deficiência Intelectual/diagnóstico , Deficiência Intelectual/genética , Deficiência Intelectual/veterinária , Cinesinas/genética , Masculino , Espasticidade Muscular/diagnóstico , Espasticidade Muscular/genética , Espasticidade Muscular/veterinária , Mutação de Sentido Incorreto , Atrofia Óptica/diagnóstico , Atrofia Óptica/genética , Atrofia Óptica/veterinária , Polimorfismo de Nucleotídeo Único , Paraplegia Espástica Hereditária/diagnóstico , Paraplegia Espástica Hereditária/genética , Paraplegia Espástica Hereditária/veterinária , Ataxias Espinocerebelares/diagnóstico , Ataxias Espinocerebelares/genética , Ataxias Espinocerebelares/veterinária , Degenerações Espinocerebelares/diagnóstico , Degenerações Espinocerebelares/genética , Sequenciamento Completo do Genoma
4.
Nature ; 511(7507): 46-51, 2014 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-24990743

RESUMO

The large spectrum of limb morphologies reflects the wide evolutionary diversification of the basic pentadactyl pattern in tetrapods. In even-toed ungulates (artiodactyls, including cattle), limbs are adapted for running as a consequence of progressive reduction of their distal skeleton to symmetrical and elongated middle digits with hoofed phalanges. Here we analyse bovine embryos to establish that polarized gene expression is progressively lost during limb development in comparison to the mouse. Notably, the transcriptional upregulation of the Ptch1 gene, which encodes a Sonic hedgehog (SHH) receptor, is disrupted specifically in the bovine limb bud mesenchyme. This is due to evolutionary alteration of a Ptch1 cis-regulatory module, which no longer responds to graded SHH signalling during bovine handplate development. Our study provides a molecular explanation for the loss of digit asymmetry in bovine limb buds and suggests that modifications affecting the Ptch1 cis-regulatory landscape have contributed to evolutionary diversification of artiodactyl limbs.


Assuntos
Evolução Biológica , Extremidades/anatomia & histologia , Extremidades/embriologia , Proteínas Hedgehog/metabolismo , Receptores de Superfície Celular/metabolismo , Animais , Padronização Corporal , Bovinos , Feminino , Regulação da Expressão Gênica no Desenvolvimento/genética , Botões de Extremidades/anatomia & histologia , Botões de Extremidades/embriologia , Masculino , Mesoderma/metabolismo , Camundongos , Camundongos Transgênicos , Receptores Patched , Receptor Patched-1 , Receptores de Superfície Celular/genética , Sequências Reguladoras de Ácido Nucleico/genética
5.
PLoS Genet ; 13(4): e1006597, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28376083

RESUMO

Neuropathies are neurodegenerative diseases affecting humans and other mammals. Many genetic causes have been identified so far, including mutations of genes encoding proteins involved in mitochondrial dynamics. Recently, the "Turning calves syndrome", a novel sensorimotor polyneuropathy was described in the French Rouge-des-Prés cattle breed. In the present study, we determined that this hereditary disease resulted from a single nucleotide substitution in SLC25A46, a gene encoding a protein of the mitochondrial carrier family. This mutation caused an apparent damaging amino-acid substitution. To better understand the function of this protein, we knocked out the Slc25a46 gene in a mouse model. This alteration affected not only the nervous system but also altered general metabolism, resulting in premature mortality. Based on optic microscopy examination, electron microscopy and on biochemical, metabolic and proteomic analyses, we showed that the Slc25a46 disruption caused a fusion/fission imbalance and an abnormal mitochondrial architecture that disturbed mitochondrial metabolism. These data extended the range of phenotypes associated with Slc25a46 dysfunction. Moreover, this Slc25a46 knock-out mouse model should be useful to further elucidate the role of SLC25A46 in mitochondrial dynamics.


Assuntos
Dinâmica Mitocondrial/genética , Proteínas Mitocondriais/genética , Proteínas de Transporte de Fosfato/genética , Polineuropatias/genética , Proteômica , Substituição de Aminoácidos/genética , Animais , Bovinos , Humanos , Camundongos , Mitocôndrias/genética , Mitocôndrias/patologia , Mutação , Fenótipo , Polineuropatias/patologia , Polineuropatias/veterinária
6.
Biochem Biophys Res Commun ; 516(1): 258-263, 2019 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-31230751

RESUMO

DNAJC2 protein, also known as ZRF1 or MPP11, acts both as chaperone and as chromatin regulator. It is involved in stem cell differentiation and its expression is associated with various cancer malignancies. However, the role of Dnajc2 gene during mouse embryogenesis has not been assessed so far. To this aim, we invalidated Dnajc2 gene in FVB/Nj mice using the CrispR/Cas9 approach. We showed that this invalidation leads to the early post-implantation lethality of the nullizygous embryos. Furthermore, using siRNAs against Dnajc2 in mouse 1-cell embryos, we showed that maternal Dnajc2 mRNAs may allow for the early preimplantation development of these embryos. Altogether, these data demonstrate for the first time the requirement of DNAJC2 for early mouse embryogenesis.


Assuntos
Proteínas de Ligação a DNA/genética , Embrião de Mamíferos/embriologia , Regulação da Expressão Gênica no Desenvolvimento , Camundongos/embriologia , Chaperonas Moleculares/genética , Proteínas de Ligação a RNA/genética , Animais , Sistemas CRISPR-Cas , Implantação do Embrião , Perda do Embrião/genética , Embrião de Mamíferos/metabolismo , Desenvolvimento Embrionário , Feminino , Deleção de Genes , Camundongos/genética , Gravidez
7.
Genet Sel Evol ; 48(1): 87, 2016 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-27846802

RESUMO

BACKGROUND: In recent years, several bovine genome sequencing projects were carried out with the aim of developing genomic tools to improve dairy and beef production efficiency and sustainability. RESULTS: In this study, we describe the first French cattle genome variation dataset obtained by sequencing 274 whole genomes representing several major dairy and beef breeds. This dataset contains over 28 million single nucleotide polymorphisms (SNPs) and small insertions and deletions. Comparisons between sequencing results and SNP array genotypes revealed a very high genotype concordance rate, which indicates the good quality of our data. CONCLUSIONS: To our knowledge, this is the first large-scale catalog of small genomic variations in French dairy and beef cattle. This resource will contribute to the study of gene functions and population structure and also help to improve traits through genotype-guided selection.


Assuntos
Cruzamento , Variação Genética , Genoma , Polimorfismo de Nucleotídeo Único , Animais , Bovinos , Mapeamento Cromossômico , Indústria de Laticínios , Feminino , Genótipo , Mutação INDEL , Masculino , Taxa de Mutação , Fenótipo , Carne Vermelha
8.
Nat Commun ; 12(1): 5557, 2021 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-34548488

RESUMO

Precise cis-regulatory control of gene expression is essential for normal embryogenesis and tissue development. The BMP antagonist Gremlin1 (Grem1) is a key node in the signalling system that coordinately controls limb bud development. Here, we use mouse reverse genetics to identify the enhancers in the Grem1 genomic landscape and the underlying cis-regulatory logics that orchestrate the spatio-temporal Grem1 expression dynamics during limb bud development. We establish that transcript levels are controlled in an additive manner while spatial regulation requires synergistic interactions among multiple enhancers. Disrupting these interactions shows that altered spatial regulation rather than reduced Grem1 transcript levels prefigures digit fusions and loss. Two of the enhancers are evolutionary ancient and highly conserved from basal fishes to mammals. Analysing these enhancers from different species reveal the substantial spatial plasticity in Grem1 regulation in tetrapods and basal fishes, which provides insights into the fin-to-limb transition and evolutionary diversification of pentadactyl limbs.


Assuntos
Nadadeiras de Animais/metabolismo , Elementos Facilitadores Genéticos , Regulação da Expressão Gênica no Desenvolvimento , Peptídeos e Proteínas de Sinalização Intercelular/genética , Botões de Extremidades/metabolismo , Nadadeiras de Animais/citologia , Nadadeiras de Animais/crescimento & desenvolvimento , Animais , Sequência de Bases , Evolução Biológica , Boidae , Bovinos , Galinhas , Embrião de Mamíferos , Embrião não Mamífero , Iguanas , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Botões de Extremidades/citologia , Botões de Extremidades/crescimento & desenvolvimento , Camundongos , Camundongos Transgênicos , Filogenia , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Coelhos , Genética Reversa/métodos , Alinhamento de Sequência , Homologia de Sequência do Ácido Nucleico , Tubarões , Transdução de Sinais , Suínos
9.
Sci Rep ; 10(1): 6765, 2020 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-32317725

RESUMO

Shadoo belongs to the prion protein family, an evolutionary conserved and extensively studied family due to the implication of PrP in Transmissible Spongiform Encephalopathies. However, the biological function of these genes remains poorly understood. While Sprn-knockdown experiments suggested an involvement of Shadoo during mouse embryonic development, Sprn-knockout experiments in 129Pas/C57BL/6J or 129Pas/FVB/NCr mice did not confirm it. In the present study, we analyzed the impact of Sprn gene invalidation in a pure FVB/NJ genetic background, using a zinc finger nuclease approach. The in-depth analysis of the derived knockout transgenic mice revealed a significant increase in embryonic lethality at early post-implantation stages, a growth retardation of young Sprn-knockout pups fed by wild type mice and a lactation defect of Sprn-knockout females. Histological and transcriptional analyses of knockout E7.5 embryos, E14.5 placentas and G7.5 mammary glands revealed specific roles of the Shadoo protein in mouse early embryogenesis, tissue development and differentiation with a potential antagonist action between PrP and Shadoo. This study thus highlights the entanglement between the proteins of the prion family.


Assuntos
Diferenciação Celular/genética , Desenvolvimento Embrionário/genética , Proteínas do Tecido Nervoso/genética , Proteínas Priônicas/genética , Animais , Proteínas Ligadas por GPI , Humanos , Glândulas Mamárias Animais/crescimento & desenvolvimento , Glândulas Mamárias Animais/metabolismo , Camundongos , Camundongos Knockout , Células-Tronco Embrionárias Murinas/metabolismo , Organogênese/genética , Doenças Priônicas/genética , Doenças Priônicas/patologia
10.
BMC Genet ; 8: 5, 2007 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-17319939

RESUMO

BACKGROUND: Isolated syndactyly in cattle, also known as mulefoot, is inherited as an autosomal recessive trait with variable penetrance in different cattle breeds. Recently, two independent mutations in the bovine LRP4 gene have been reported as the primary cause of syndactyly in the Holstein and Angus cattle breeds. RESULTS: We confirmed the previously described LRP4 exon 33 two nucleotide substitution in most of the affected Holstein calves and revealed additional evidence for allelic heterogeneity by the identification of four new LRP4 non-synonymous point mutations co-segregating in Holstein, German Simmental and Simmental-Charolais families. CONCLUSION: We confirmed a significant role of LRP4 mutations in the pathogenesis of congenital syndactyly in cattle. The newly detected missense mutations in the LRP4 gene represent independent mutations affecting different conserved protein domains. However, the four newly described LRP4 mutations do still not explain all analyzed cases of syndactyly.


Assuntos
Doenças dos Bovinos/genética , Bovinos/genética , Mutação de Sentido Incorreto , Receptores de LDL/genética , Sindactilia/veterinária , Sequência de Aminoácidos , Animais , Cruzamento , Bovinos/classificação , Códon/genética , Cruzamentos Genéticos , Análise Mutacional de DNA , Feminino , Masculino , Dados de Sequência Molecular , Linhagem , Estrutura Terciária de Proteína , Receptores de LDL/fisiologia , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Especificidade da Espécie , Sindactilia/genética
11.
Nat Commun ; 6: 6894, 2015 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-25902731

RESUMO

Caprine-like Generalized Hypoplasia Syndrome (SHGC) is an autosomal-recessive disorder in Montbéliarde cattle. Affected animals present a wide range of clinical features that include the following: delayed development with low birth weight, hind limb muscular hypoplasia, caprine-like thin head and partial coat depigmentation. Here we show that SHGC is caused by a truncating mutation in the CEP250 gene that encodes the centrosomal protein C-Nap1. This mutation results in centrosome splitting, which neither affects centriole ultrastructure and duplication in dividing cells nor centriole function in cilium assembly and mitotic spindle organization. Loss of C-Nap1-mediated centriole cohesion leads to an altered cell migration phenotype. This discovery extends the range of loci that constitute the spectrum of autosomal primary recessive microcephaly (MCPH) and Seckel-like syndromes.


Assuntos
Doenças dos Bovinos/genética , Proteínas de Ciclo Celular/genética , Movimento Celular/genética , Centríolos/metabolismo , Hipopigmentação/veterinária , Microcefalia/veterinária , Morfogênese/genética , Doenças Musculares/veterinária , Animais , Bovinos , Hipopigmentação/genética , Microcefalia/genética , Doenças Musculares/genética , Mutação , Síndrome
12.
Front Cell Dev Biol ; 2: 35, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25364742

RESUMO

Based on its developmental pattern of expression, early studies suggested the implication of the mammalian Prion protein PrP, a glycosylphosphatidylinositol-anchored ubiquitously expressed and evolutionary conserved glycoprotein encoded by the Prnp gene, in early embryogenesis. However, gene invalidation in several species did not result in obvious developmental abnormalities and it was only recently that it was associated in mice with intra-uterine growth retardation and placental dysfunction. A proposed explanation for this lack of easily detectable developmental-related phenotype is the existence in the genome of one or more gene (s) able to compensate for the absence of PrP. Indeed, two other members of the Prnp gene family have been recently described, Doppel and Shadoo, and the consequences of their invalidation alongside that of PrP tested in mice. No embryonic defect was observed in mice depleted for Doppel and PrP. Interestingly, the co-invalidation of PrP and Shadoo in two independent studies led to apparently conflicting observations, with no apparent consequences in one report and the observation of a developmental defect of the ectoplacental cone that leads to early embryonic lethality in the other. This short review aims at summarizing these recent, apparently conflicting data highlighting the related biological questions and associated implications in terms of animal and human health.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA