Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
PLoS One ; 17(3): e0266250, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35353868

RESUMO

The SARS coronavirus 2 (SARS-CoV-2) spike (S) protein binding to the human ACE2 receptor is the molecular event that initiates viral entry into host cells and leads to infection and virus replication. There is a need for agents blocking viral entry into host cells that are cross-reactive with emerging virus variants. VHH-72 is an anti-SARS-CoV-1 single-domain antibody that also exhibits cross-specificity with SARS-CoV-2 but with decreased binding affinity. Here we applied a structure-based approach to affinity-mature VHH-72 for the SARS-CoV-2 spike protein while retaining the original affinity for SARS-CoV-1. This was achieved by employing the computational platform ADAPT in a constrained dual-affinity optimization mode as a means of broadening specificity. Select mutants designed by ADAPT were formatted as fusions with a human IgG1-Fc fragment. These mutants demonstrated improved binding to the SARS-CoV-2 spike protein due to decreased dissociation rates. Functional testing for virus neutralization revealed improvements relative to the parental VHH72-Fc up to 10-fold using a SARS-CoV-2 pseudotyped lentivirus and 20-fold against the SARS-CoV-2 authentic live virus (Wuhan variant). Binding and neutralization improvements were maintained for some other SARS-CoV-2 variants currently in circulation. These improved VHH-72 mutants are predicted to establish novel interactions with the S antigen. They will be useful, alone or as fusions with other functional modules, in the global quest for treatments of COVID-19 infections.


Assuntos
COVID-19 , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave , Anticorpos de Domínio Único , Anticorpos Antivirais , Humanos , Ligação Proteica , SARS-CoV-2/genética , Anticorpos de Domínio Único/metabolismo , Glicoproteína da Espícula de Coronavírus
2.
MAbs ; 13(1): 1997072, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34812124

RESUMO

Human carbonic anhydrase (hCAIX), an extracellular enzyme that catalyzes the reversible hydration of CO2, is often overexpressed in solid tumors. This enzyme is instrumental in maintaining the survival of cancer cells in a hypoxic and acidic tumor microenvironment. Absent in most normal tissues, hCAIX is a promising therapeutic target for detection and treatment of solid tumors. Screening of a library of anti-hCAIX monoclonal antibodies (mAbs) previously identified three therapeutic candidates (mAb c2C7, m4A2 and m9B6) with distinct biophysical and functional characteristics. Selective binding to the catalytic domain was confirmed by yeast surface display and isothermal calorimetry, and deeper insight into the dynamic binding profiles of these mAbs upon binding were highlighted by bottom-up hydrogen-deuterium exchange mass spectrometry (HDX-MS). Here, a conformational and allosterically silent epitope was identified for the antibody-drug conjugate candidate c2C7. Unique binding profiles are described for both inhibitory antibodies, m4A2 and m9B6. M4A2 reduces the ability of the enzyme to hydrate CO2 by steric gating at the entrance of the catalytic cavity. Conversely, m9B6 disrupts the secondary structure that is necessary for substrate binding and hydration. The synergy of these two inhibitory mechanisms is demonstrated in in vitro activity assays and HDX-MS. Finally, the ability of m4A2 to modulate extracellular pH and intracellular metabolism is reported. By highlighting three unique modes by which hCAIX can be targeted, this study demonstrates both the utility of HDX-MS as an important tool in the characterization of anti-cancer biotherapeutics, and the underlying value of CAIX as a therapeutic target.


Assuntos
Medição da Troca de Deutério , Espectrometria de Massa com Troca Hidrogênio-Deutério , Anticorpos Monoclonais/química , Domínio Catalítico , Deutério/química , Medição da Troca de Deutério/métodos , Mapeamento de Epitopos/métodos , Humanos
3.
MAbs ; 13(1): 1999194, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34806527

RESUMO

The architectural complexity and heterogeneity of the tumor microenvironment (TME) remains a substantial obstacle in the successful treatment of cancer. Hypoxia, caused by insufficient oxygen supply, and acidosis, resulting from the expulsion of acidic metabolites, are prominent features of the TME. To mitigate the consequences of the hostile TME, cancer cells metabolically rewire themselves and express a series of specific transporters and enzymes instrumental to this adaptation. One of these proteins is carbonic anhydrase (CA)IX, a zinc-containing extracellular membrane bound enzyme that has been shown to play a critical role in the maintenance of a neutral intracellular pH (pHi), allowing tumor cells to survive and thrive in these harsh conditions. Although CAIX has been considered a promising cancer target, only two antibody-based therapeutics have been clinically tested so far. To fill this gap, we generated a series of novel monoclonal antibodies (mAbs) that specifically recognize the extracellular domain (ECD) of human CAIX. Here we describe the biophysical and functional properties of a set of antibodies against the CAIX ECD domain and their applicability as: 1) suitable for development as an antibody-drug-conjugate, 2) an inhibitor of CAIX enzyme activity, or 3) an imaging/detection antibody. The results presented here demonstrate the potential of these specific hCAIX mAbs for further development as novel cancer therapeutic and/or diagnostic tools.


Assuntos
Antineoplásicos Imunológicos , Anidrases Carbônicas , Anticorpos Monoclonais/farmacologia , Antígenos de Neoplasias , Biomarcadores Tumorais , Anidrases Carbônicas/química , Anidrases Carbônicas/metabolismo , Linhagem Celular Tumoral , Humanos , Concentração de Íons de Hidrogênio
4.
MAbs ; 12(1): 1682866, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31777319

RESUMO

Recent development of monoclonal antibodies as mainstream anticancer agents demands further optimization of their safety for use in humans. Potent targeting and/or effector activities on normal tissues is an obvious toxicity concern. Optimization of specific tumor targeting could be achieved by taking advantage of the extracellular acidity of solid tumors relative to normal tissues. Here, we applied a structure-based computational approach to engineer anti-human epidermal growth factor receptor 2 (Her2) antibodies with selective binding in the acidic tumor microenvironment. We used an affinity maturation platform in which dual-pH histidine-scanning mutagenesis was implemented for pH selectivity optimization. Testing of a small set of designs for binding to the recombinant Her2 ectodomain led to the identification of antigen-binding fragment (Fab) variants with the desired pH-dependent binding behavior. Binding selectivity toward acidic pH was improved by as much as 25-fold relative to the parental bH1-Fab. In vitro experiments on cells expressing intact Her2 confirmed that designed variants formatted as IgG1/k full-size antibodies have high affinity and inhibit the growth of tumor spheroids at a level comparable to that of the benchmark anti-Her2 antibody trastuzumab (Herceptin®) at acidic pH, whereas these effects were significantly reduced at physiological pH. In contrast, both Herceptin and the parental bH1 antibody exhibited strong cell binding and growth inhibition irrespective of pH. This work demonstrates the feasibility of computational optimization of antibodies for selective targeting of the acidic environment such as that found in many solid tumors.


Assuntos
Antineoplásicos Imunológicos/química , Imunoterapia/métodos , Neoplasias/terapia , Afinidade de Anticorpos/genética , Antineoplásicos Imunológicos/uso terapêutico , Linhagem Celular Tumoral , Histidina/genética , Humanos , Concentração de Íons de Hidrogênio , Mutagênese Sítio-Dirigida , Neoplasias/imunologia , Ligação Proteica , Conformação Proteica , Engenharia de Proteínas , Receptor ErbB-2/imunologia , Trastuzumab/uso terapêutico , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA