Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Nature ; 614(7946): 59-63, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36725996

RESUMO

Scattering resonances are an essential tool for controlling the interactions of ultracold atoms and molecules. However, conventional Feshbach scattering resonances1, which have been extensively studied in various platforms1-7, are not expected to exist in most ultracold polar molecules because of the fast loss that occurs when two molecules approach at a close distance8-10. Here we demonstrate a new type of scattering resonance that is universal for a wide range of polar molecules. The so-called field-linked resonances11-14 occur in the scattering of microwave-dressed molecules because of stable macroscopic tetramer states in the intermolecular potential. We identify two resonances between ultracold ground-state sodium-potassium molecules and use the microwave frequencies and polarizations to tune the inelastic collision rate by three orders of magnitude, from the unitary limit to well below the universal regime. The field-linked resonance provides a tuning knob to independently control the elastic contact interaction and the dipole-dipole interaction, which we observe as a modification in the thermalization rate. Our result provides a general strategy for resonant scattering between ultracold polar molecules, which paves the way for realizing dipolar superfluids15 and molecular supersolids16, as well as assembling ultracold polyatomic molecules.

2.
Nature ; 607(7920): 677-681, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35896646

RESUMO

Ultracold polar molecules offer strong electric dipole moments and rich internal structure, which makes them ideal building blocks to explore exotic quantum matter1-9, implement quantum information schemes10-12 and test the fundamental symmetries of nature13. Realizing their full potential requires cooling interacting molecular gases deeply into the quantum-degenerate regime. However, the intrinsically unstable collisions between molecules at short range have so far prevented direct cooling through elastic collisions to quantum degeneracy in three dimensions. Here we demonstrate evaporative cooling of a three-dimensional gas of fermionic sodium-potassium molecules to well below the Fermi temperature using microwave shielding. The molecules are protected from reaching short range with a repulsive barrier engineered by coupling rotational states with a blue-detuned circularly polarized microwave. The microwave dressing induces strong tunable dipolar interactions between the molecules, leading to high elastic collision rates that can exceed the inelastic ones by at least a factor of 460. This large elastic-to-inelastic collision ratio allows us to cool the molecular gas to 21 nanokelvin, corresponding to 0.36 times the Fermi temperature. Such cold and dense samples of polar molecules open the path to the exploration of many-body phenomena with strong dipolar interactions.

3.
Molecules ; 28(4)2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36838592

RESUMO

The aim of the present study was to correlate the antioxidant, antimicrobial, and cytotoxic activities of hydroalcoholic extracts obtained from the aerial parts of three Dracocephalum moldavica L. cultivars with their polyphenolic compositions. The polyphenols were identified and quantified using spectrophotometrical methods and LC-MS analysis. Their antioxidant capacities were assessed using the 1,1-diphenyl-2-picrylhydrazyl (DPPH) and ferric reducing antioxidant power (FRAP) methods. Their in vitro antimicrobial efficacies were assessed using the agar well diffusion and broth microdilution methods. Their cytotoxicity was investigated on normal diploid foreskin fibroblasts (BJ) and on colorectal adenocarcinoma (DLD-1) cell lines. The results pointed out significant amounts of polyphenolic compounds in the compositions of the tested cultivars, with rosmarinic acid as the main compound (amounts ranging between 5.337 ± 0.0411 and 6.320 ± 0.0535 mg/mL). All three cultivars displayed significant antioxidant (IC50 ranging between 35.542 ± 0.043 and 40.901 ± 0.161 µg/mL for the DPPH assay, and for the FRAP assay 293.194 ± 0.213 and 330.165 ± 0.754 µmol Trolox equivalent/mg dry vegetal material) and antimicrobial potential (especially towards the Gram-positive bacteria), as well as a selective toxicity towards the tumoral line. A significant positive correlation was found between antioxidant activity and the total phenolic acids (r2 = 0.987) and polyphenols (r2 = 0.951). These findings bring further arguments for strongly considering D. moldavica cultivars as promising vegetal products, which warrants further investigation.


Assuntos
Anti-Infecciosos , Antineoplásicos , Antioxidantes/química , Extratos Vegetais/química , Polifenóis/farmacologia , Anti-Infecciosos/farmacologia
4.
Phys Rev Lett ; 128(15): 153401, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35499890

RESUMO

We study three-body loss in an ultracold mixture of a thermal Bose gas and a degenerate Fermi gas. We find that at unitarity, where the interspecies scattering length diverges, the usual inverse-square temperature scaling of the three-body loss found in nondegenerate systems is strongly modified and reduced with the increasing degeneracy of the Fermi gas. While the reduction of loss is qualitatively explained within the few-body scattering framework, a remaining suppression provides evidence for the long-range Ruderman-Kittel-Kasuya-Yosida (RKKY) interactions mediated by fermions between bosons. Our model based on RKKY interactions quantitatively reproduces the data without free parameters, and predicts one order of magnitude reduction of the three-body loss coefficient in the deeply Fermi-degenerate regime.

5.
Phys Rev Lett ; 125(2): 023201, 2020 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-32701321

RESUMO

We demonstrate a versatile, state-dependent trapping scheme for the ground and first excited rotational states of ^{23}Na^{40}K molecules. Close to the rotational manifold of a narrow electronic transition, we determine tune-out frequencies where the polarizability of one state vanishes while the other remains finite, and a magic frequency where both states experience equal polarizability. The proximity of these frequencies of only 10 GHz allows for dynamic switching between different trap configurations in a single experiment, while still maintaining sufficiently low scattering rates.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA