Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Arch Biochem Biophys ; 316(2): 879-85, 1995 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-7532387

RESUMO

Liver cytosolic fractions are known to catalyze the reduction of certain C-nitroso compounds to their corresponding hydroxylamines and amines. Alcohol dehydrogenase (ADH), NAD(P)H:quinone oxidoreductase, and xanthine and aldehyde oxidases have been implicated as C-nitroso reductases. To probe the role of these cytosolic enzymes in the reduction of C-nitroso compounds we have studied the effects of classical inhibitors of these enzymes on the ability of liver cytosolic fractions from ADH+ and ADH- deermice to reduce p-nitrosophenol to p-aminophenol. Pyrazole, a potent inhibitor of ADH, inhibited NADH-p-nitrosophenol reduction by ADH+ cytosol by > 85%. Thus, ADH contributes substantially to NADH-C-nitroso reduction by cytosol from ADH+ deermice. The NAD(P)H:quinone oxidoreductase inhibitor, dicumarol, inhibited NADH-dependent p-aminophenol formation by about 25%; however, dicumarol potently inhibited the NADPH-dependent formation (90-95%). As expected, cytosol from ADH- deermice did not catalyze pyrazole-sensitive (ADH-dependent) C-nitroso reduction with NADH as the cofactor. Both NADPH- and NADH-p-nitrosophenol reduction by ADH- cytosol were inhibited > 90% by dicumarol. The xanthine oxidase/aldehyde oxidase inhibitor, allopurinol, was without effect on NAD(P)H cytosolic p-nitrosophenol reduction from ADH- and ADH+ deermice under either aerobic or anaerobic conditions. Our findings suggest that in the ADH+ animal, ADH contributes significantly to NADH-dependent C-nitroso reduction by cytosol relative to NAD(P)H:quinone oxidoreductase. NADPH-dependent p-nitrosophenol reduction by liver cytosol of ADH+ animals is mostly dicumarol-sensitive, which implicates NAD(P)H:quinone oxidoreductase as the major NADPH-dependent activity. In ADH- deermice, both NADH- and NADPH-dependent p-nitrosophenol reduction are essentially dicumarol-sensitive (NAD(P)H:quinone oxidoreductase-dependent). Because the toxic expression of C-nitroso compounds is mediated by hydroxylamine intermediates, the present data indicate the importance of considering the role of ADH in the toxic sequelae of nitro and nitroso arenes.


Assuntos
Álcool Desidrogenase/metabolismo , Citosol/metabolismo , Fígado/metabolismo , NAD(P)H Desidrogenase (Quinona)/metabolismo , Compostos Nitrosos/metabolismo , Álcool Desidrogenase/antagonistas & inibidores , Álcool Desidrogenase/deficiência , Álcool Desidrogenase/genética , Aldeído Oxidase , Aldeído Oxirredutases/metabolismo , Aminofenóis/metabolismo , Animais , Animais de Laboratório , Citosol/enzimologia , Dicumarol/farmacologia , Fígado/enzimologia , Mutação , NAD/metabolismo , NAD(P)H Desidrogenase (Quinona)/antagonistas & inibidores , NADP/metabolismo , Peromyscus , Pirazóis/farmacologia , Xantina Oxidase/metabolismo
2.
J Biochem Mol Toxicol ; 14(5): 244-51, 2000.
Artigo em Inglês | MEDLINE | ID: mdl-10969996

RESUMO

Sulfur mustard is a chemical warfare agent that causes blistering of the skin and damages the eyes and airway after environmental exposure. We have previously reported that thiodiglycol (TDG, 2,2'-bis-thiodiethanol), the hydrolysis product of sulfur mustard, is oxidized by alcohol dehydrogenase (ADH) purified from horse liver or present in mouse liver and human skin cytosol. Humans express four functional classes of ADH composed of several different isozymes, which vary in their tissue distribution, some occurring in skin. To help us evaluate the potential contribution of the various human isozymes toward toxicity in skin and in other tissues, we have compared the catalytic activity of purified human class I alphaalpha-, beta1beta1-, beta2beta2-, and gamma1gamma1-ADH, class II pi-ADH, class III chi-ADH, and class IV sigma-ADH with respect to TDG oxidation and their relative sensitivities to inhibition by pyrazole. Specific activities toward TDG were 123, 79, 347, 647, and 12 nmol/min/mg for the class I alphaalpha-, beta1,beta1-, beta2beta2-, and gamma1gamma1-ADH and class II pi-ADH, respectively. TDG was not a substrate for class III chi-ADH. The specific activity of class IV sigma-ADH was estimated at about 1630 nmol/min/mg. 1 mM pyrazole, a potent inhibitor of class I ADH, inhibited the class I alphaalpha, beta1beta1, beta2beta2, and gamma1gamma1 ADH and class IV sigma-ADH by 83, 100, 56, 90, and 73%, respectively. The class I alphaalpha- and beta1beta1-ADH oxidized TDG with kcat/Km value of 7-8 mM(-1) min(-1), beta2beta2-ADH with a value 19 mM(-1) min(-1) and class I gamma1gamma1-ADH with a value of 176 mM(-1) min(-1). The kcat/Km value for class IV sigma-ADH was estimated at 4 mM(-1) min(-1). The activities of class IV sigma-ADH and class I gamma1gamma1-ADH are of significant interest because of their prevalence in eyes, lungs, stomach, and skin, all target organs of sulfur mustard toxicity.


Assuntos
Álcool Desidrogenase/metabolismo , Isoenzimas/metabolismo , Compostos de Sulfidrila/metabolismo , Álcool Desidrogenase/antagonistas & inibidores , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/farmacologia , Fomepizol , Humanos , Isoenzimas/antagonistas & inibidores , Cinética , Oxirredução , Pirazóis/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA