Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Pain Med ; 24(Suppl 1): S71-S80, 2023 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-36525387

RESUMO

The Biospecimen Collection and Processing Working Group of the National Institutes of Health (NIH) HEAL Initiative BACPAC Research Program was charged with identifying molecular biomarkers of interest to chronic low back pain (cLBP). Having identified biomarkers of interest, the Working Group worked with the New York University Grossman School of Medicine, Center for Biospecimen Research and Development-funded by the Early Phase Pain Investigation Clinical Network Data Coordinating Center-to harmonize consortium-wide and site-specific efforts for biospecimen collection and analysis. Biospecimen collected are saliva, blood (whole, plasma, serum), urine, stool, and spine tissue (paraspinal muscle, ligamentum flavum, vertebral bone, facet cartilage, disc endplate, annulus fibrosus, or nucleus pulposus). The omics data acquisition and analyses derived from the biospecimen include genomics and epigenetics from DNA, proteomics from protein, transcriptomics from RNA, and microbiomics from 16S rRNA. These analyses contribute to the overarching goal of BACPAC to phenotype cLBP and will guide future efforts for precision medicine treatment.


Assuntos
Dor Lombar , Humanos , RNA Ribossômico 16S , Biomarcadores , Dor Lombar/terapia , Fenótipo , New York
2.
Int J Mol Sci ; 23(5)2022 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-35269863

RESUMO

Low back pain (LBP) has been among the leading causes of disability for the past 30 years. This highlights the need for improvement in LBP management. Many clinical trials focus on developing treatments against degenerative disc disease (DDD). The multifactorial etiology of DDD and associated risk factors lead to a heterogeneous patient population. It comes as no surprise that the outcomes of clinical trials on intradiscal mesenchymal stem cell (MSC) injections for patients with DDD are inconsistent. Intradiscal MSC injections have demonstrated substantial pain relief and significant disability-related improvements, yet they have failed to regenerate the intervertebral disc (IVD). Increasing evidence suggests that the positive outcomes in clinical trials might be attributed to the immunomodulatory potential of MSCs rather than to their regenerative properties. Therefore, patient stratification for inflammatory DDD phenotypes may (i) better serve the mechanisms of action of MSCs and (ii) increase the treatment effect. Modic type 1 changes-pathologic inflammatory, fibrotic changes in the vertebral bone marrow-are frequently observed adjacent to degenerated IVDs in chronic LBP patients and represent a clinically distinct subpopulation of patients with DDD. This review discusses whether degenerated IVDs of patients with Modic type 1 changes should be treated with an intradiscal MSC injection.


Assuntos
Degeneração do Disco Intervertebral , Disco Intervertebral , Dor Lombar , Células-Tronco Mesenquimais , Medula Óssea/metabolismo , Humanos , Disco Intervertebral/metabolismo , Degeneração do Disco Intervertebral/metabolismo , Dor Lombar/etiologia , Dor Lombar/terapia , Células-Tronco Mesenquimais/metabolismo
3.
Eur Spine J ; 30(4): 1018-1027, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33423134

RESUMO

PURPOSE: Lumbar Modic change (MC) can serve as a diagnostic marker as well as an independent source of chronic low back pain (CLBP). This study aimed to test for the existence of serum biomarkers in CLBP patients with MC. METHODS: Age- and sex-matched CLBP patients with confirmed MC on lumbar MRI (n = 40) and pain-free controls (n = 40) were assessed. MC was classified into M1, predominating M1, predominating M2 and M2. MC volumes were calculated. Fasting blood samples were assessed for inflammatory mediators, signalling molecules, growth factors and bone turnover markers. Serum concentrations of 46 biomarkers were measured. RESULTS: Median concentrations of interleukin (IL)-15 (p < 0.001), IL-8 (p < 0.001), tumour necrosis factor (TNF)-alpha (p < 0.001), Eotaxin-1 (p < 0.05), Eotaxin-3 (p < 0.001), monocyte chemotactic protein (MCP)-1 (p < 0.05), macrophage inflammatory protein (MIP)-1alpha (p < 0.01), TEK receptor tyrosine kinase (Tie)-2 (p < 0.001), vascular cell adhesion molecule (VCAM)-1 (p < 0.001), RANTES (p < 0.001), C telopeptide of type I collagen (CTX)-1 (p < 0.001), vascular endothelial growth factor (VEGF)-C (p < 0.001), VEGF-D (p < 0.05), fms-related tyrosine kinase (Flt)-1 (p < 0.01) and intercellular adhesion molecule (ICAM)-1 (p < 0.01) were significantly higher among controls. IL-1sRII (23.2 vs. 15.5 ng/ml, p < 0.001) and hepatocyte growth factor (HGF)-1 (169 vs. 105 pg/ml, p < 0.01) concentrations were significantly higher among patients. Type or volume of MC was not associated with biomarker concentrations. CONCLUSIONS: This is the first study to assess the blood serum biomarker profile in individuals with CLBP with MC. Several biomarkers were suppressed, while two markers (IL-1sRII and HGF) were elevated among MC patients, irrespective of MC type or size, with CLBP compared with asymptomatic controls.


Assuntos
Dor Lombar , Biomarcadores , Humanos , Mediadores da Inflamação , Região Lombossacral , Fator A de Crescimento do Endotélio Vascular
4.
Int J Mol Sci ; 22(5)2021 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-33652921

RESUMO

Previously, we proposed the hypothesis that similarities in the inflammatory response observed in acne vulgaris and degenerative disc disease (DDD), especially the central role of interleukin (IL)-1ß, may be further evidence of the role of the anaerobic bacterium Cutibacterium (previously Propionibacterium) acnes in the underlying aetiology of disc degeneration. To investigate this, we examined the upregulation of IL-1ß, and other known IL-1ß-induced inflammatory markers and neurotrophic factors, from nucleus-pulposus-derived disc cells infected in vitro with C. acnes for up to 48 h. Upon infection, significant upregulation of IL-1ß, alongside IL-6, IL-8, chemokine (C-C motif) ligand 3 (CCL3), chemokine (C-C motif) ligand 4 (CCL4), nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF), was observed with cells isolated from the degenerative discs of eight patients versus non-infected controls. Expression levels did, however, depend on gene target, multiplicity and period of infection and, notably, donor response. Pre-treatment of cells with clindamycin prior to infection significantly reduced the production of pro-inflammatory mediators. This study confirms that C. acnes can stimulate the expression of IL-1ß and other host molecules previously associated with pathological changes in disc tissue, including neo-innervation. While still controversial, the role of C. acnes in DDD remains biologically credible, and its ability to cause disease likely reflects a combination of factors, particularly individualised response to infection.


Assuntos
Inflamação/microbiologia , Degeneração do Disco Intervertebral/microbiologia , Fatores de Crescimento Neural/genética , Propionibacterium acnes/fisiologia , Adulto , Células Cultivadas , Feminino , Interações Hospedeiro-Patógeno , Humanos , Inflamação/genética , Interleucina-1beta/genética , Disco Intervertebral/metabolismo , Disco Intervertebral/microbiologia , Degeneração do Disco Intervertebral/genética , Masculino , Pessoa de Meia-Idade , Regulação para Cima
5.
Int J Mol Sci ; 21(11)2020 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-32471173

RESUMO

Vertebral endplate bone marrow lesions, visualized on magnetic resonance imaging (MRI) as Modic changes (MC), are associated with chronic low back pain (cLBP). Since guidelines recommend against routine spinal MRI for cLBP in primary care, MC may be underdiagnosed. Serum biomarkers for MC would allow early diagnosis, inform clinical care decisions, and supplement treatment monitoring. We aimed to discover biomarkers in the blood serum that correlate with MC pathophysiological processes. For this single-site cross-sectional study, we recruited 54 subjects with 38 cLBP patients and 16 volunteers without a history of LBP. All subjects completed an Oswestry Disability Index (ODI) questionnaire and 10-cm Visual Analog Score (VAS) for LBP (VASback) and leg pain. Lumbar T1-weighted and fat-saturated T2-weighted MRI were acquired at 3T and used for MC classification in each endplate. Blood serum was collected on the day of MRI. Biomarkers related to disc resorption and bone marrow fibrosis were analyzed with enzyme-linked immune-absorbent assays. The concentration of biomarkers between no MC and any type of MC (AnyMC), MC1, and MC2 were compared. The Area Under the Curve (AUC) of the Receiver Operating Characteristics were calculated for each biomarker and for bivariable biomarker models. We found that biomarkers related to type III and type IV collagen degradation and formation tended to correlate with the presence of MC (p = 0.060-0.088). The bivariable model with the highest AUC was PRO-C3 + C4M and had a moderate diagnostic value for AnyMC in cLBP patients (AUC = 0.73, specificity = 78.9%, sensitivity = 73.7%). In conclusion, serum biomarkers related to the formation and degradation of type III and type IV collagen, which are key molecules in bone marrow fibrosis, correlated with MC presence. Bone marrow fibrosis may be an important pathophysiological process in MC that should be targeted in larger biomarker and treatment studies.


Assuntos
Dor nas Costas/sangue , Membrana Basal/diagnóstico por imagem , Medula Óssea/diagnóstico por imagem , Tecido Conjuntivo/diagnóstico por imagem , Vértebras Lombares/diagnóstico por imagem , Adulto , Dor nas Costas/diagnóstico por imagem , Dor nas Costas/patologia , Biomarcadores/sangue , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade
6.
Eur Spine J ; 27(5): 1013-1020, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-28884220

RESUMO

PURPOSE: Intervertebral disc with Propionibacterium acnes (P. acnes) is suggested to be an etiology of Modic type I changes in the adjacent bone marrow. However it is unknown if disc cells can respond to P. acnes and if bone marrow cells respond to bacterial and disc metabolites draining from infected discs. METHODS: Human disc cells (n = 10) were co-cultured with 10- and 100-fold excess of P. acnes over disc cells for 3 h and 24 h. Lipopolysaccharide was used as positive control. Expression of IL1, IL6, IL8, and CCL2 by disc cells was quantified by quantitative PCR. Lipase activity was measured in culture supernatants (n = 6). Human vertebral bone marrow mononuclear cells (BMNCs) (n = 2) were cultured in conditioned media from disc cell/P. acnes co-cultures and expression of IL1, IL6, IL8, and CCL2 was measured after 24 h. RESULTS: All disc cells responded to lipopolysaccharide but only 6/10 responded to P. acnes with increased cytokine expression. Cytokine increase was time- but not P. acnes concentration-dependent. Disc cell responsiveness was associated with the presence of lumbar Modic changes in the donor. Lipase activity was increased independent of disc cell responsiveness. BMNCs responded with inflammatory activity only when cultured in supernatants from responsive disc cell lines. CONCLUSION: Disc cell responsiveness to P. acnes associates with the presence of lumbar Modic changes. Furthermore, bone marrow cells had an inflammatory response to the cocktail of disc cytokines and P. acnes metabolites. These data indicate that low virulent P. acnes infection of the disc is a potential exacerbating factor to Modic changes.


Assuntos
Células da Medula Óssea/imunologia , Disco Intervertebral/citologia , Disco Intervertebral/imunologia , Propionibacterium acnes/citologia , Propionibacterium acnes/imunologia , Células Cultivadas , Técnicas de Cocultura , Interações Hospedeiro-Patógeno/imunologia , Humanos
7.
Eur Spine J ; 26(5): 1362-1373, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28138783

RESUMO

STUDY DESIGN: Cross-sectional cohort analysis of patients with Modic Changes (MC). OBJECTIVE: Our goal was to characterize the molecular and cellular features of MC bone marrow and adjacent discs. We hypothesized that MC associate with biologic cross-talk between discs and bone marrow, the presence of which may have both diagnostic and therapeutic implications. BACKGROUND DATA: MC are vertebral bone marrow lesions that can be a diagnostic indicator for discogenic low back pain. Yet, the pathobiology of MC is largely unknown. METHODS: Patients with Modic type 1 or 2 changes (MC1, MC2) undergoing at least 2-level lumbar interbody fusion with one surgical level having MC and one without MC (control level). Two discs (MC, control) and two bone marrow aspirates (MC, control) were collected per patient. Marrow cellularity was analyzed using flow cytometry. Myelopoietic differentiation potential of bone marrow cells was quantified to gauge marrow function, as was the relative gene expression profiles of the marrow and disc cells. Disc/bone marrow cross-talk was assessed by comparing MC disc/bone marrow features relative to unaffected levels. RESULTS: Thirteen MC1 and eleven MC2 patients were included. We observed pro-osteoclastic changes in MC2 discs, an inflammatory dysmyelopoiesis with fibrogenic changes in MC1 and MC2 marrow, and up-regulation of neurotrophic receptors in MC1 and MC2 bone marrow and discs. CONCLUSION: Our data reveal a fibrogenic and pro-inflammatory cross-talk between MC bone marrow and adjacent discs. This provides insight into the pain generator at MC levels and informs novel therapeutic targets for treatment of MC-associated LBP.


Assuntos
Medula Óssea/patologia , Disco Intervertebral/patologia , Medula Óssea/metabolismo , Estudos de Coortes , Estudos Transversais , Regulação para Baixo , Feminino , Citometria de Fluxo , Perfilação da Expressão Gênica , Humanos , Disco Intervertebral/metabolismo , Masculino , Pessoa de Meia-Idade , Osteogênese , Regulação para Cima
8.
Eur Spine J ; 25(11): 3723-3734, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-26914098

RESUMO

PURPOSE: Low back pain (LBP) is the most disabling condition worldwide. Although LBP relates to different spinal pathologies, vertebral bone marrow lesions visualized as Modic changes on MRI have a high specificity for discogenic LBP. This review summarizes the pathobiology of Modic changes and suggests a disease model. METHODS: Non-systematic literature review. RESULTS: Chemical and mechanical stimulation of nociceptors adjacent to damaged endplates are likely a source of pain. Modic changes are adjacent to a degenerated intervertebral disc and have three generally interconvertible types suggesting that the different Modic change types represent different stages of the same pathological process, which is characterized by inflammation, high bone turnover, and fibrosis. A disease model is suggested where disc/endplate damage and the persistence of an inflammatory stimulus (i.e., occult discitis or autoimmune response against disc material) create predisposing conditions. The risk to develop Modic changes likely depends on the inflammatory potential of the disc and the capacity of the bone marrow to respond to it. Bone marrow lesions in osteoarthritic knee joints share many characteristics with Modic changes adjacent to degenerated discs and suggest that damage-associated molecular patterns and marrow fat metabolism are important pathogenetic factors. There is no consensus on the ideal therapy. Non-surgical treatment approaches including intradiscal steroid injections, anti-TNF-α antibody, antibiotics, and bisphosphonates have some demonstrated efficacy in mostly non-replicated clinical studies in reducing Modic changes in the short term, but with unknown long-term benefits. New diagnostic tools and animal models are required to improve painful Modic change identification and classification, and to clarify the pathogenesis. CONCLUSION: Modic changes are likely to be more than just a coincidental imaging finding in LBP patients and rather represent an underlying pathology that should be a target for therapy.


Assuntos
Medula Óssea/patologia , Disco Intervertebral/patologia , Dor Lombar/etiologia , Vértebras Lombares/patologia , Imageamento por Ressonância Magnética , Medula Óssea/diagnóstico por imagem , Humanos , Disco Intervertebral/diagnóstico por imagem , Dor Lombar/diagnóstico por imagem , Dor Lombar/patologia , Vértebras Lombares/diagnóstico por imagem , Modelos Biológicos
9.
Eur Spine J ; 24(9): 1901-8, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24736931

RESUMO

PURPOSE: Post-traumatic disc degeneration (DD) is currently investigated with models not fully matching the clinical condition, in particular post-traumatic loading of the disc is not considered. Therefore, the aim was to establish an in vitro burst fracture model that more closely mimics the in vivo situation by including post-traumatic physiological loading and to investigate DD under these conditions. METHODS: 72 rabbit spinal segments (disc/endplates + 1/3 of adjacent vertebrae) were harvested from T8/9 to L5/6 and assigned to control (n = 36) or trauma groups (n = 36). Burst fractures were induced at day 0 in the trauma group using a dropped-weight device. From day 1 to 28, all specimens were cultured at 37 °C and were dynamically loaded daily (~1 MPa nominal pressure, 1 Hz, 2,500 cycles). At day 1, 7, 14, and 28, 9 specimens from each group were taken for analysis: histology (n = 2), total disc glycosaminoglycan (GAG) content (n = 3) normalized to DNA, and qPCR of DD marker genes (n = 4) in the nucleus pulposus and the annulus fibrosus. RESULTS: Burst fracture with post-traumatic physiological loading resulted in a 65 % loss of GAG/DNA by day 28. Histological sections confirmed the remodeling of the matrix. Catabolic (MMP-1/-3), pro-apoptotic (TNF-α, fas ligand), and pro-inflammatory (IL-1/-6, iNOS) gene transcription was substantially up-regulated in the nucleus after the trauma and did not normalize to control within 28 days. Similar results were found for the annulus on lower levels. CONCLUSION: An in vitro burst fracture model with physiological post-traumatic loading was established. Under these conditions, burst spinal segments undergo strong and persistent degenerative changes.


Assuntos
Degeneração do Disco Intervertebral/patologia , Fraturas da Coluna Vertebral/complicações , Estresse Fisiológico/fisiologia , Análise de Variância , Animais , Modelos Animais de Doenças , Proteína Ligante Fas/metabolismo , Glicosaminoglicanos/metabolismo , Interleucina-1/metabolismo , Degeneração do Disco Intervertebral/etiologia , Degeneração do Disco Intervertebral/metabolismo , Metaloproteinase 1 da Matriz/metabolismo , Coelhos , Transcrição Gênica/fisiologia , Fator de Necrose Tumoral alfa/metabolismo
10.
JOR Spine ; 7(1): e1312, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38312949

RESUMO

Disc degeneration and vertebral endplate bone marrow lesions called Modic changes are prevalent spinal pathologies found in chronic low back pain patients. Their pathomechanisms are complex and not fully understood. Recent studies have revealed that complement system proteins and interactors are dysregulated in disc degeneration and Modic changes. The complement system is part of the innate immune system and plays a critical role in tissue homeostasis. However, its dysregulation has also been associated with various pathological conditions such as rheumatoid arthritis and osteoarthritis. Here, we review the evidence for the involvement of the complement system in intervertebral disc degeneration and Modic changes. We found that only a handful of studies reported on complement factors in Modic changes and disc degeneration. Therefore, the level of evidence for the involvement of the complement system is currently low. Nevertheless, the complement system is tightly intertwined with processes known to occur during disc degeneration and Modic changes, such as increased cell death, autoantibody production, bacterial defense processes, neutrophil activation, and osteoclast formation, indicating a contribution of the complement system to these spinal pathologies. Based on these mechanisms, we propose a model how the complement system could contribute to the vicious cycle of tissue damage and chronic inflammation in disc degeneration and Modic changes. With this review, we aim to highlight a currently understudied but potentially important inflammatory pathomechanism of disc degeneration and Modic changes that may be a novel therapeutic target.

11.
Stem Cell Res Ther ; 15(1): 65, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38443999

RESUMO

BACKGROUND: The multimodal properties of mesenchymal stromal cells (MSCs), particularly their ability to modulate immune responses is of high interest in translational research. Pro-inflammatory, hypoxic, and 3D culture priming are promising and often used strategies to improve the immunosuppressive potency of MSCs, but the underlying mechanisms are not well understood. Therefore, the aims of this study were (i) to compare the effects of pro-inflammatory, hypoxic, and 3D culture priming on the in vitro immunosuppressive potential of MSCs, (ii) to assess if immunosuppressive priming effects are temporally preserved under standard and translationally relevant culture conditions, and (iii) to investigate if the three priming strategies engage the same immunosuppressive mechanisms. METHODS: Functional in vitro T cell suppressive potency measurements were conducted to assess the impact of pro-inflammatory, hypoxic, and 3D culture priming on the immunosuppressive potential of human bone marrow-derived MSCs. Primed MSCs were either cultured under standard cell culture conditions or translationally relevant culture conditions, and their transcriptomic adaptations were monitored over time. Next-generation sequencing was performed to assess if different priming strategies activate distinct immunosuppressive mechanisms. RESULTS: (i) Pro-inflammatory, hypoxic, and 3D culture priming induced profound transcriptomic changes in MSCs resulting in a significantly enhanced T cell suppressive potential of pro-inflammatory and 3D culture primed MSCs. (ii) Priming effects rapidly faded under standard cell culture conditions but were partially preserved under translationally relevant conditions. Interestingly, continuous 3D culture priming of MSCs maintained the immunosuppressive potency of MSCs. (iii) Next-generation sequencing revealed that priming strategy-specific differentially expressed genes are involved in the T cell suppressive capacity of MSCs, indicating that different priming strategies engage distinct immunosuppressive mechanisms. CONCLUSION: Priming can be a useful approach to improve the immunosuppressive potency of MSCs. However, future studies involving primed MSCs should carefully consider the significant impact of translationally relevant conditions on the preservation of priming effects. Continuous 3D culture could act as a functionalized formulation, supporting the administration of MSC spheroids for a sustainably improved immunosuppressive potency.


Assuntos
Células-Tronco Mesenquimais , Humanos , Técnicas de Cultura de Células , Perfilação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Hipóxia , Imunossupressores
12.
JOR Spine ; 7(3): e1337, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39015135

RESUMO

Introduction: Modic changes (MC) are bone marrow lesions of vertebral bones, which can be detected with magnetic resonance imaging (MRI) adjacent to degenerated intervertebral discs. Defined by their appearance on T1 and T2 weighted images, there are three interconvertible types: MC1, MC2, and MC3. The inter-observer variability of the MRI diagnosis is high, therefore a diagnostic serum biomarker complementing the MRI to facilitate diagnosis and follow-up would be of great value. Methods: We used a highly sensitive and reproducible proteomics approach: DIA/SWATH-MS to find serum biomarkers in a subset of the Northern Finland Birth Cohort 1966. Separately, we measured a panel of factors involved in inflammation and angiogenesis to confirm some potential biomarkers published before with an ELISA-based method called V-Plex. Results: We found neither an association between the serum concentrations of the proteins detected with DIA/SWATH-MS with the presence of MC, nor a correlation with the size of the MC lesions. We did not find any association between the factors measured with the V-Plex and the presence of MC or their size. Conclusion: Altogether, our study suggests that a robust and generally usable biomarker to facilitate the diagnosis of MC cannot readily be found in serum.

13.
JOR Spine ; 7(2): e1330, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38585427

RESUMO

Introduction: The emerging field of the disc microbiome challenges traditional views of disc sterility, which opens new avenues for novel clinical insights. However, the lack of methodological consensus in disc microbiome studies introduces discrepancies. The aims of this study were to (1) compare the disc microbiome of non-Modic (nonMC), Modic type 1 change (MC1), and MC2 discs to findings from prior disc microbiome studies, and (2) investigate if discrepancies to prior studies can be explained with bioinformatic variations. Methods: Sequencing of 16S rRNA in 70 discs (24 nonMC, 25 MC1, and 21 MC2) for microbiome profiling. The experimental setup included buffer contamination controls and was performed under aseptic conditions. Methodology and results were contrasted with previous disc microbiome studies. Critical bioinformatic steps that were different in our best-practice approach and previous disc microbiome studies (taxonomic lineage assignment, prevalence cut-off) were varied and their effect on results were compared. Results: There was limited overlap of results with a previous study on MC disc microbiome. No bacterial genera were shared using the same bioinformatic parameters. Taxonomic lineage assignment using "amplicon sequencing variants" was more sensitive and detected 48 genera compared to 22 with "operational taxonomic units" (previous study). Increasing filter cut-off from 4% to 50% (previous study) reduced genera from 48 to 4 genera. Despite these differences, both studies observed dysbiosis with an increased abundance of gram-negative bacteria in MC discs as well as a lower beta-diversity. Cutibacterium was persistently detected in all groups independent of the bioinformatic approach, emphasizing its prevalence. Conclusion: There is dysbiosis in MC discs. Bioinformatic parameters impact results yet cannot explain the different findings from this and a previous study. Therefore, discrepancies are likely caused by different sample preparations or true biologic differences. Harmonized protocols are required to advance understanding of the disc microbiome and its clinical implications.

14.
Cells ; 13(17)2024 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-39272974

RESUMO

INTRODUCTION: The vertebral cartilage endplate (CEP), crucial for intervertebral disc health, is prone to degeneration linked to chronic low back pain, disc degeneration, and Modic changes (MC). While it is known that disc cells express toll-like receptors (TLRs) that recognize pathogen- and damage-associated molecular patterns (PAMPs and DAMPs), it is unclear if CEP cells (CEPCs) share this trait. The CEP has a higher cell density than the disc, making CEPCs an important contributor. This study aimed to identify TLRs on CEPCs and their role in pro-inflammatory and catabolic gene expression. METHODS: Gene expression of TLR1-10 was measured in human CEPs and expanded CEPCs using quantitative polymerase chain reaction. Additionally, surface TLR expression was measured in CEPs grouped into non-MC and MC. CEPCs were stimulated with tumor necrosis factor alpha, interleukin 1 beta, small-molecule TLR agonists, or the 30 kDa N-terminal fibronectin fragment. TLR2 signaling was inhibited with TL2-C29, and TLR2 protein expression was measured with flow cytometry. RESULTS: Ex vivo analysis found all 10 TLRs expressed, while cultured CEPCs lost TLR8 and TLR9 expression. TLR2 expression was significantly increased in MC1 CEPCs, and its expression increased significantly after pro-inflammatory stimulation. Stimulation of the TLR2/6 heterodimer upregulated TLR2 protein expression. The TLR2/1 and TLR2/6 ligands upregulated pro-inflammatory genes and matrix metalloproteases (MMP1, MMP3, and MMP13), and TLR2 inhibition inhibited their upregulation. Endplate resorptive capacity of TLR2 activation was confirmed in a CEP explant model. CONCLUSIONS: The expression of TLR1-10 in CEPCs suggests that the CEP is susceptible to PAMP and DAMP stimulation. Enhanced TLR2 expression in MC1, and generally in CEPCs under inflammatory conditions, has pro-inflammatory and pro-catabolic effects, suggesting a potential role in disc degeneration and MC.


Assuntos
Receptor 2 Toll-Like , Receptores Toll-Like , Humanos , Receptor 2 Toll-Like/metabolismo , Receptor 2 Toll-Like/genética , Receptores Toll-Like/metabolismo , Receptores Toll-Like/genética , Cartilagem/metabolismo , Cartilagem/patologia , Masculino , Feminino , Pessoa de Meia-Idade , Disco Intervertebral/metabolismo , Disco Intervertebral/patologia , Inflamação/patologia , Inflamação/genética , Inflamação/metabolismo , Regulação da Expressão Gênica , Adulto , Degeneração do Disco Intervertebral/genética , Degeneração do Disco Intervertebral/metabolismo , Degeneração do Disco Intervertebral/patologia , Idoso , Transdução de Sinais
15.
Eur J Pain ; 27(7): 794-804, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36999437

RESUMO

OBJECTIVE: The aim of this systematic review was to appraise and analyse the knowledge on bone-related biochemical and histological biomarkers in complex regional pain syndrome 1 (CRPS 1). DATABASE: A total of 7 studies were included in the analysis (biochemical analyses n = 3, animal study n = 1, histological examination n = 3). RESULTS: Two studies were classified as having a low risk of bias and five studies with a moderate risk of bias. Biochemical analysis indicated an increased bone turnover with increased bone resorption (elevated urinary levels of deoxypyridinoline) and bone formation (increased serum levels of calcitonin, osteoprotegerin and alkaline phosphatase). The animal study reported an increased signalling of proinflammatory tumour necrosis factor 4 weeks postfracture, which did, however, not contribute to local bone loss. Histological examination from biopsies revealed thinning and resorption of cortical bone, rarefication and reduction in trabecular bone and vascular modification in the bone marrow in acute CRPS 1, and replacement of the bone marrow by dystrophic vessels in chronic CRPS 1. CONCLUSION: The limited data reviewed revealed certain potential bone-related biomarkers in CRPS. Biomarkers hold the potential to identify patients who may benefit from treatments that influence bone turnover. Thus, this review identifies important areas for future research in CRPS1 patients.


Assuntos
Síndromes da Dor Regional Complexa , Distrofia Simpática Reflexa , Animais , Biomarcadores , Síndromes da Dor Regional Complexa/patologia
16.
Front Cell Dev Biol ; 11: 1286280, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37965581

RESUMO

The pain in patients with Modic type 1 changes (MC1) is often due to vertebral body endplate pain, which is linked to abnormal neurite outgrowth in the vertebral body and adjacent endplate. The aim of this study was to understand the role of MC1 bone marrow stromal cells (BMSCs) in neurite outgrowth. BMSCs can produce neurotrophic factors, which have been shown to be pro-fibrotic in MC1, and expand in the perivascular space where sensory vertebral nerves are located. The study involved the exploration of the BMSC transcriptome in MC1, co-culture of MC1 BMSCs with the neuroblastoma cell line SH-SY5Y, analysis of supernatant cytokines, and analysis of gene expression changes in co-cultured SH-SY5Y. Transcriptomic analysis revealed upregulated brain-derived neurotrophic factor (BDNF) signaling-related pathways. Co-cultures of MC1 BMSCs with SH-SY5Y cells resulted in increased neurite sprouting compared to co-cultures with control BMSCs. The concentration of BDNF and other cytokines supporting neuron growth was increased in MC1 vs. control BMSC co-culture supernatants. Taken together, these findings show that MC1 BMSCs provide strong pro-neurotrophic cues to nearby neurons and could be a relevant disease-modifying treatment target.

17.
J Orthop Res ; 41(5): 1115-1122, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36062874

RESUMO

Modic type 1 changes (MC1) are vertebral bone marrow lesions and associate with low back pain. Increased serum C-reactive protein (CRP) has inconsistently been associated with MC1. We aimed to provide evidence for the role of CRP in the tissue pathophysiology of MC1 bone marrow. From 13 MC1 patients undergoing spinal fusion at MC1 levels, vertebral bone marrow aspirates from MC1 and intrapatient control bone marrow were taken. Bone marrow CRP, interleukin (IL)-1, and IL-6 were measured with enzyme-linked immunosorbent assays; lactate dehydrogenase (LDH) was measured with a colorimetric assay. CRP, IL-1, and IL-6 were compared between MC1 and control bone marrow. Bone marrow CRP was correlated with blood CRP and with bone marrow IL-1, IL-6, and LDH. CRP expression by marrow cells was measured with a polymerase chain reaction. Increased CRP in MC1 bone marrow (mean difference: +0.22 mg CRP/g, 95% confidence interval [CI] [-0.04, 0.47], p = 0.088) correlated with blood CRP (r = 0.69, p = 0.018), with bone marrow IL-1ß (ρ = 0.52, p = 0.029) and IL-6 (ρ = 0.51, p = 0.031). Marrow cells did not express CRP. Increased LDH in MC1 bone marrow (143.1%, 95% CI [110.7%, 175.4%], p = 0.014) indicated necrosis. A blood CRP threshold of 3.2 mg/L detected with 100% accuracy increased CRP in MC1 bone marrow. In conclusion, the association of CRP with inflammatory and necrotic changes in MC1 bone marrow provides evidence for a pathophysiological role of CRP in MC1 bone marrow.


Assuntos
Proteína C-Reativa , Dor Lombar , Humanos , Proteína C-Reativa/metabolismo , Medula Óssea/patologia , Interleucina-6 , Dor Lombar/patologia
18.
JOR Spine ; 6(4): e1294, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38156054

RESUMO

The cartilaginous endplates (CEP) are key components of the intervertebral disc (IVD) necessary for sustaining the nutrition of the disc while distributing mechanical loads and preventing the disc from bulging into the adjacent vertebral body. The size, shape, and composition of the CEP are essential in maintaining its function, and degeneration of the CEP is considered a contributor to early IVD degeneration. In addition, the CEP is implicated in Modic changes, which are often associated with low back pain. This review aims to tackle the current knowledge of the CEP regarding its structure, composition, permeability, and mechanical role in a healthy disc, how they change with degeneration, and how they connect to IVD degeneration and low back pain. Additionally, the authors suggest a standardized naming convention regarding the CEP and bony endplate and suggest avoiding the term vertebral endplate. Currently, there is limited data on the CEP itself as reported data is often a combination of CEP and bony endplate, or the CEP is considered as articular cartilage. However, it is clear the CEP is a unique tissue type that differs from articular cartilage, bony endplate, and other IVD tissues. Thus, future research should investigate the CEP separately to fully understand its role in healthy and degenerated IVDs. Further, most IVD regeneration therapies in development failed to address, or even considered the CEP, despite its key role in nutrition and mechanical stability within the IVD. Thus, the CEP should be considered and potentially targeted for future sustainable treatments.

19.
JOR Spine ; 6(1): e1237, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36994463

RESUMO

Background: Vertebral endplate signal intensity changes visualized by magnetic resonance imaging termed Modic changes (MC) are highly prevalent in low back pain patients. Interconvertibility between the three MC subtypes (MC1, MC2, MC3) suggests different pathological stages. Histologically, granulation tissue, fibrosis, and bone marrow edema are signs of inflammation in MC1 and MC2. However, different inflammatory infiltrates and amount of fatty marrow suggest distinct inflammatory processes in MC2. Aims: The aims of this study were to investigate (i) the degree of bony (BEP) and cartilage endplate (CEP) degeneration in MC2, (ii) to identify inflammatory MC2 pathomechanisms, and (iii) to show that these marrow changes correlate with severity of endplate degeneration. Methods: Pairs of axial biopsies (n = 58) spanning the entire vertebral body including both CEPs were collected from human cadaveric vertebrae with MC2. From one biopsy, the bone marrow directly adjacent to the CEP was analyzed with mass spectrometry. Differentially expressed proteins (DEPs) between MC2 and control were identified and bioinformatic enrichment analysis was performed. The other biopsy was processed for paraffin histology and BEP/CEP degenerations were scored. Endplate scores were correlated with DEPs. Results: Endplates from MC2 were significantly more degenerated. Proteomic analysis revealed an activated complement system, increased expression of extracellular matrix proteins, angiogenic, and neurogenic factors in MC2 marrow. Endplate scores correlated with upregulated complement and neurogenic proteins. Discussion: The inflammatory pathomechanisms in MC2 comprises activation of the complement system. Concurrent inflammation, fibrosis, angiogenesis, and neurogenesis indicate that MC2 is a chronic inflammation. Correlation of endplate damage with complement and neurogenic proteins suggest that complement system activation and neoinnervation may be linked to endplate damage. The endplate-near marrow is the pathomechanistic site, because MC2 occur at locations with more endplate degeneration. Conclusion: MC2 are fibroinflammatory changes with complement system involvement which occur adjacent to damaged endplates.

20.
JOR Spine ; 6(1): e1238, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36994456

RESUMO

Background: In vitro studies using nucleus pulposus (NP) cells are commonly used to investigate disc cell biology and pathogenesis, or to aid in the development of new therapies. However, lab-to-lab variability jeopardizes the much-needed progress in the field. Here, an international group of spine scientists collaborated to standardize extraction and expansion techniques for NP cells to reduce variability, improve comparability between labs and improve utilization of funding and resources. Methods: The most commonly applied methods for NP cell extraction, expansion, and re-differentiation were identified using a questionnaire to research groups worldwide. NP cell extraction methods from rat, rabbit, pig, dog, cow, and human NP tissue were experimentally assessed. Expansion and re-differentiation media and techniques were also investigated. Results: Recommended protocols are provided for extraction, expansion, and re-differentiation of NP cells from common species utilized for NP cell culture. Conclusions: This international, multilab and multispecies study identified cell extraction methods for greater cell yield and fewer gene expression changes by applying species-specific pronase usage, 60-100 U/ml collagenase for shorter durations. Recommendations for NP cell expansion, passage number, and many factors driving successful cell culture in different species are also addressed to support harmonization, rigor, and cross-lab comparisons on NP cells worldwide.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA