Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Mol Ecol ; 29(4): 720-737, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31971312

RESUMO

Many diapausing insects undergo a nutrient storage period prior to their entry into diapause. Bumble bee queens diapause as adults in the winter preceding their spring nest initiation period. Before diapause, they sequester glycogen and lipids, which they metabolize during the overwintering period. We used RNA sequencing to examine how age and nectar diet (specifically, the concentration of sucrose in nectar) impact gene expression in the pre-overwintering bumble bee queen fat body, the "liver-like" organ in insects with broad functions related to nutrient storage and metabolism. We found that diet on its own, and in combination with age, impacts the expression of genes involved in detoxification. Age was also a strong driver of gene expression, especially at earlier ages (up to 3 days). In addition to these molecular correlates of diet and age, we also found a putative molecular signature of diapause entry or preparation in adult queens in the oldest age group (12 days) fed the most sucrose-rich diet, based on comparisons between our data set and another transcriptome data set from bumble bee queens. This transcriptomic pattern suggests that preparation for (or entry into) diapause might be in part mediated by nutritional state in bumble bee queens. Collectively, these findings show that there are molecular processes in the fat body that are responsive to sucrose levels in the diet and/or associated with age-related maturational changes. A better understanding of these processes may shed light on important aspects of bumble bee biology, such as queen responses to nutritional and other forms of stress, and the factors that regulate their entrance into diapause.


Assuntos
Abelhas/genética , Análise de Sequência de RNA/métodos , Transcriptoma/genética , Animais , Abelhas/crescimento & desenvolvimento , Dieta , Corpo Adiposo/crescimento & desenvolvimento , Corpo Adiposo/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/genética
2.
Proc Natl Acad Sci U S A ; 113(16): 4386-91, 2016 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-27044096

RESUMO

Emergent fungal diseases are critical factors in global biodiversity declines. The fungal pathogenNosema bombiwas recently found to be widespread in declining species of North American bumble bees (Bombus), with circumstantial evidence suggesting an exotic introduction from Europe. This interpretation has been hampered by a lack of knowledge of global genetic variation, geographic origin, and changing prevalence patterns ofN. bombiin declining North American populations. Thus, the temporal and spatial emergence ofN. bombiand its potential role in bumble bee decline remain speculative. We analyzeNosemaprevalence and genetic variation in the United States and Europe from 1980, before an alleged introduction in the early 1990s, to 2011, extractingNosemaDNA fromBombusnatural history collection specimens from across this time period.Nosema bombiprevalence increased significantly from low detectable frequency in the 1980s to significantly higher frequency in the mid- to late-1990s, corresponding to a period of reported massive infectious outbreak ofN. bombiin commercial bumble bee rearing stocks in North America. Despite the increased frequency, we find no conclusive evidence of an exoticN. bombiorigin based on genetic analysis of globalNosemapopulations; the widespreadNosemastrain found currently in declining United States bumble bees was present in the United States before commercial colony trade. Notably, the USN. bombiis not detectably different from that found predominantly throughout Western Europe, with both regions characterized by low genetic diversity compared with high levels of diversity found in Asia, where commercial bee breeding activities are low or nonexistent.


Assuntos
Abelhas/microbiologia , Interações Hospedeiro-Patógeno/fisiologia , Nosema/fisiologia , Animais , América do Norte , Nosema/patogenicidade
3.
Mol Phylogenet Evol ; 64(1): 219-31, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22521295

RESUMO

Bumble bees (Bombus Latreille) are an important group of social insects, well recognized throughout northern temperate regions as important pollinators of wild and agricultural plants. Little is known about the biology of this group in southern portions of the Americas, especially in Mesoamerica, a region of geological and ecological complexity from Mexico through Central America. One ubiquitous Mesoamerican species, Bombus ephippiatus, is enigmatic. Like many other Bombus, this species is homogeneous in body structure yet exhibits striking intraspecific color pattern polymorphism across its range, leading to uncertainty about its genealogical boundaries. It has been grouped taxonomically with B. wilmattae, a species narrowly restricted to southern Mexico and northern Guatamala. Furthermore, the relationships between these two taxa and a third species, B. impatiens, found only in America north of Mexico, have been controversial. Our phylogenetic analysis of DNA sequences from mitochondrial COI and nuclear PEPCK and CAD resolves the phylogeny of these three taxa as (B. impatiens, (B. ephippiatus, B. wilmattae)). Additional data from eight nuclear microsatellite markers reveal complex patterns of genetic divergence and isolation among populations of B. ephippiatus across its extensive geographic range, providing evidence for multiple independent evolutionary lineages. These lineages correspond not only to geographic and habitat variation across their range, but also to distinct color pattern groups present in the species. Knowledge of the phylogeny and genetic divergence of the B. ephippiatus group will provide a framework for understanding evolutionary and ecological origins of color pattern polymorphism in bumble bees, as well as providing insight into geographical factors enhancing speciation in Mesoamerica.


Assuntos
Abelhas/genética , Demografia , Ecossistema , Variação Genética , Filogenia , Animais , Sequência de Bases , Teorema de Bayes , América Central , Primers do DNA/genética , Desoxirribonucleases/genética , Evolução Molecular , Funções Verossimilhança , México , Repetições de Microssatélites/genética , Modelos Genéticos , Dados de Sequência Molecular , Fosfoenolpiruvato Carboxiquinase (GTP)/genética , Filogeografia , Alinhamento de Sequência , Análise de Sequência de DNA , Especificidade da Espécie
4.
Sci Total Environ ; 833: 155216, 2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-35421476

RESUMO

A primary goal in biology is to understand the effects of multiple, interacting environmental stressors on organisms. Wild and domesticated bees are exposed to a wide variety of interacting biotic and abiotic stressors, with widespread declines in floral resources and agrochemical exposure being two of the most important. In this study, we used examinations of brain gene expression to explore the sublethal consequences of neonicotinoid pesticide exposure and pollen diet composition in nest-founding bumble bee queens. We demonstrate for the first time that pollen diet composition can influence the strength of bumble bee queen responses to pesticide exposure at the molecular level. Specifically, one pollen mixture in our study appeared to buffer bumble bee queens entirely against the effects of pesticide exposure, with respect to brain gene expression. Additionally, we detected unique effects of pollen diet and sustained (versus more temporary) pesticide exposure on queen gene expression. Our findings support the hypothesis that nutritional status can help buffer animals against the harmful effects of other stressors, including pesticides, and highlight the importance of using molecular approaches to explore sublethal consequences of stressors.


Assuntos
Praguicidas , Animais , Abelhas , Encéfalo , Dieta , Expressão Gênica , Praguicidas/análise , Praguicidas/toxicidade , Pólen/química
5.
Environ Entomol ; 48(3): 711-717, 2019 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-31173096

RESUMO

Bumble bees are generalist pollinators that typically collect floral rewards from a wide array of flowering plant species. Among the greatest threats to wild bumble bee populations worldwide, many of which are declining, is a loss of floral resource abundance and diversity in the landscapes they inhabit. We examined how composition of pollen diet impacts early nesting success in laboratory-reared queens of the bumble bee Bombus impatiens. Specifically, we provided queens and their young nests with one of three pollen diets, each of which was dominated by a single pollen type, and explored how this diet treatment influenced the length of time until queens initiated nests, total counts of brood in the nest at the end of the experiment (8 wk later), and the size and weight of adult offspring produced. We found that the amount of later-stage brood (pupae and/or adults) produced by recently-initiated nests was strongly impacted by pollen diet. For example, on average 66% fewer later-stage brood were found in nests provided with the Cistus pollen Linnaeus (Cistaceae), relative to the predominantly Asteraceae pollen. This finding suggests that particular pollen diet compositions may delay larval growth, which delays colony development and may ultimately be detrimental for young nests. This study sheds light on how one of the leading stressors for bumble bees (nutritional stress) may negatively impact populations through its influence on brood production during the nest-founding stage of the colony cycle.


Assuntos
Himenópteros , Animais , Abelhas , Dieta , Larva , Pólen
6.
Conserv Physiol ; 7(1): coz048, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32802333

RESUMO

Many insects sequester nutrients during developmentally programmed periods, which they metabolize during subsequent life history stages. During these periods, failure to store adequate nutrients can have persistent effects on fitness. Here, we examined a critical but under-studied nutrient storage period in queen bumble bees: the first days of adult life, which are followed by a diapause period typically coinciding with winter. We experimentally manipulated availability of pollen (the primary dietary source of lipids and protein) and the sugar concentration of artificial nectar (the primary source of carbohydrates) for laboratory-reared queens during this period and examined three nutritional phenomena: (i) diet impacts on nutritional status, (ii) the timescale upon which nutrient sequestration occurs and (iii) the fitness consequences of nutrient sequestration, specifically related to survival across the life cycle. We found evidence that pollen and nectar starvation negatively impact lipid storage, whereas nectar sugar concentration impacts stored carbohydrates. The majority of nutrients were stored during the first ~ 3 days of adult life. Nutrients derived from pollen during this period appear to be more critical for surviving earlier life stages, whereas nutrients sequestered from nectar become more important for surviving the diapause and post-diapause periods. Negative impacts of a poor diet during early life persisted in our experiment, even when pollen and a relatively high (50%) nectar sugar concentration were provided post-diapause. Based on these findings, we posit that the nutritional environment during the early adult life of queens has both immediate and persistent impacts on fitness. These findings underscore the importance of examining effects of stage-specific nutritional limitations on physiology and life history traits in this social insect group. Moreover, the findings may shed light on how declining food resources are contributing to the decline of wild bumble bee populations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA