Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Exp Cell Res ; 373(1-2): 164-170, 2018 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-30342004

RESUMO

Ketamine, an FDA-approved N-methyl-D-aspartate (NMDA) receptor antagonist, is commonly used for general pediatric anesthesia. Accumulating evidence has indicated that prolonged exposure to ketamine induces widespread apoptotic cell death in the developing brains of experimental animals. Although mitochondria are known to play a pivotal role in cell death, little is known about the alterations in mitochondrial ultrastructure that occur during ketamine-induced neurotoxicity. The objective of this pilot study was to utilize classic and contemporary methods in electron microscopy to study the impact of ketamine on the structure of mitochondria in the developing rat brain. While transmission electron microscopy (TEM) was employed to comprehensively study mitochondrial inner membrane topology, serial block-face scanning electron microscopy (SBF-SEM) was used as a complementary technique to compare the overall mitochondrial morphology from a representative treated and untreated neuron. In this study, postnatal day 7 (PND-7) Sprague-Dawley rats were treated with ketamine or saline (6 subcutaneous injections × 20 mg/kg or 10 ml/kg, respectively, at 2-h intervals with a 6-h withdrawal period after the last injection, n=6 each group). Samples from the frontal cortex were harvested and analyzed using TEM or SBF-SEM. While classic TEM revealed that repeated ketamine exposure induces significant mitochondrial swelling in neurons, the newer technique of SBF-SEM confirmed the mitochondrial swelling in three dimensions (3D) and showed that ketamine exposure may also induce mitochondrial fission, which was not observable in the two dimensions (2D) of TEM. Furthermore, 3D statistical analysis of these reconstructed mitochondria appeared to show that ketamine-treated mitochondria had significantly larger volumes per unit surface area than mitochondria from the untreated neuron. The ultrastructural mitochondrial alterations demonstrated here by TEM and SBF-SEM support ketamine's proposed mechanism of neurotoxicity in the developing rat brain.


Assuntos
Analgésicos/toxicidade , Encéfalo/efeitos dos fármacos , Antagonistas de Aminoácidos Excitatórios/toxicidade , Ketamina/toxicidade , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/ultraestrutura , Animais , Encéfalo/ultraestrutura , Feminino , Processamento de Imagem Assistida por Computador , Masculino , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Membranas Mitocondriais/efeitos dos fármacos , Membranas Mitocondriais/ultraestrutura , Ratos Sprague-Dawley
2.
Plant Physiol ; 171(3): 1905-20, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27217494

RESUMO

Traditional marker-based mapping and next-generation sequencing was used to determine that the Arabidopsis (Arabidopsis thaliana) low cell wall arabinose mutant murus5 (mur5) encodes a defective allele of REVERSIBLY GLYCOSYLATED POLYPEPTIDE2 (RGP2). Marker analysis of 13 F2 confirmed mutant progeny from a recombinant mapping population gave a rough map position on the upper arm of chromosome 5, and deep sequencing of DNA from these 13 lines gave five candidate genes with G→A (C→T) transitions predicted to result in amino acid changes. Of these five, only insertional mutant alleles of RGP2, a gene that encodes a UDP-arabinose mutase that interconverts UDP-arabinopyranose and UDP-arabinofuranose, exhibited the low cell wall arabinose phenotype. The identities of mur5 and two SALK insertional alleles were confirmed by allelism tests and overexpression of wild-type RGP2 complementary DNA placed under the control of the 35S promoter in the three alleles. The mur5 mutation results in the conversion of cysteine-257 to tyrosine-257 within a conserved hydrophobic cluster predicted to be distal to the active site and essential for protein stability and possible heterodimerization with other isoforms of RGP.


Assuntos
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/citologia , Arabinose/metabolismo , Parede Celular/metabolismo , Glucosiltransferases/genética , Glucosiltransferases/metabolismo , Alelos , Arabidopsis/genética , Proteínas de Arabidopsis/química , Arabinose/genética , Parede Celular/genética , Mapeamento Cromossômico , Cromossomos de Plantas , Regulação da Expressão Gênica de Plantas , Teste de Complementação Genética , Glucosiltransferases/química , Sequenciamento de Nucleotídeos em Larga Escala , Mutação , Plantas Geneticamente Modificadas , Domínios Proteicos , Dobramento de Proteína , Estabilidade Proteica , Homologia de Sequência de Aminoácidos
3.
Plant Physiol ; 165(4): 1475-1487, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24972714

RESUMO

Biotechnological approaches to reduce or modify lignin in biomass crops are predicated on the assumption that it is the principal determinant of the recalcitrance of biomass to enzymatic digestion for biofuels production. We defined quantitative trait loci (QTL) in the Intermated B73 × Mo17 recombinant inbred maize (Zea mays) population using pyrolysis molecular-beam mass spectrometry to establish stem lignin content and an enzymatic hydrolysis assay to measure glucose and xylose yield. Among five multiyear QTL for lignin abundance, two for 4-vinylphenol abundance, and four for glucose and/or xylose yield, not a single QTL for aromatic abundance and sugar yield was shared. A genome-wide association study for lignin abundance and sugar yield of the 282-member maize association panel provided candidate genes in the 11 QTL of the B73 and Mo17 parents but showed that many other alleles impacting these traits exist among this broader pool of maize genetic diversity. B73 and Mo17 genotypes exhibited large differences in gene expression in developing stem tissues independent of allelic variation. Combining these complementary genetic approaches provides a narrowed list of candidate genes. A cluster of SCARECROW-LIKE9 and SCARECROW-LIKE14 transcription factor genes provides exceptionally strong candidate genes emerging from the genome-wide association study. In addition to these and genes associated with cell wall metabolism, candidates include several other transcription factors associated with vascularization and fiber formation and components of cellular signaling pathways. These results provide new insights and strategies beyond the modification of lignin to enhance yields of biofuels from genetically modified biomass.

4.
Plant Physiol ; 151(4): 1703-28, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19926802

RESUMO

Grass species represent a major source of food, feed, and fiber crops and potential feedstocks for biofuel production. Most of the biomass is contributed by cell walls that are distinct in composition from all other flowering plants. Identifying cell wall-related genes and their functions underpins a fundamental understanding of growth and development in these species. Toward this goal, we are building a knowledge base of the maize (Zea mays) genes involved in cell wall biology, their expression profiles, and the phenotypic consequences of mutation. Over 750 maize genes were annotated and assembled into gene families predicted to function in cell wall biogenesis. Comparative genomics of maize, rice (Oryza sativa), and Arabidopsis (Arabidopsis thaliana) sequences reveal differences in gene family structure between grass species and a reference eudicot species. Analysis of transcript profile data for cell wall genes in developing maize ovaries revealed that expression within families differed by up to 100-fold. When transcriptional analyses of developing ovaries before pollination from Arabidopsis, rice, and maize were contrasted, distinct sets of cell wall genes were expressed in grasses. These differences in gene family structure and expression between Arabidopsis and the grasses underscore the requirement for a grass-specific genetic model for functional analyses. A UniformMu population proved to be an important resource in both forward- and reverse-genetics approaches to identify hundreds of mutants in cell wall genes. A forward screen of field-grown lines by near-infrared spectroscopic screen of mature leaves yielded several dozen lines with heritable spectroscopic phenotypes. Pyrolysis-molecular beam mass spectrometry confirmed that several nir mutants had altered carbohydrate-lignin compositions.


Assuntos
Parede Celular/genética , Parede Celular/fisiologia , Zea mays/genética , Arabidopsis/genética , Metabolismo dos Carboidratos/genética , Carboidratos/biossíntese , Elementos de DNA Transponíveis/genética , Flores/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genes de Plantas/genética , Redes e Vias Metabólicas/genética , Dados de Sequência Molecular , Família Multigênica/genética , Mutagênese Insercional/genética , Mutação/genética , Nucleotídeos/metabolismo , Oryza/genética , Fenótipo , Propanóis/metabolismo , Especificidade por Substrato/genética , Zea mays/citologia
5.
J Biomed Mater Res B Appl Biomater ; 104(5): 1032-42, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26013845

RESUMO

Superparamagnetic iron oxide nanoparticles (SPIONs, diameters >50 nm) have received great attention due to their promising use as magnetic resonance imaging (MRI) contrast agents. In this study, we evaluated the cellular uptake and biological responses in vitro of ultrasmall SPIONs (USPIONs, diameters < 50 nm). We compared the cellular responses between breast epithelia isolated from healthy and breast cancer donors after exposure to carboxy-terminated USPIONs (10 and 30 nm PEG-coated, 10 and 30 nm non-PEG-coated). The particles were characterized using transmission electron microscopy (TEM), dynamic light scattering (DLS) and gel electrophoresis. Cellular interactions with USPIONs were assessed by confocal microscopy and TEM. Cellular uptake of USPIONs was quantified using ICP-MS. Cell viability was measured by MTT and neutral red uptake assays. T2* weighted MRI scans were performed using a 7T scanner. Results demonstrated that cell association/internalization of USPIONs was size- and surface coating-dependent (PEG vs. non-PEG), and higher cellular uptake of 10 and 30 nm non-coated particles was observed in both cell types compared with PEG-coated particles. Cell uptake for 10 and 30 nm non-coated particles was higher in cancer cells from two of three tested donors compared to healthy cells from three donors. There was no significant cytotoxicity observed for all tested particles. Significantly enhanced MRI contrast was observed following exposure to 10 and 30 nm non-coated particles compared to PEG-coated particles in both cell types. In comparison, cancer cells showed more enhanced MRI signals when compared to normal cells. The data indicate that cell responses following exposure to USPIONs are dependent on particle properties. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 104B: 1032-1042, 2016.


Assuntos
Neoplasias da Mama/diagnóstico por imagem , Materiais Revestidos Biocompatíveis , Meios de Contraste , Compostos Férricos , Imageamento por Ressonância Magnética , Glândulas Mamárias Humanas/diagnóstico por imagem , Nanopartículas/química , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/farmacologia , Meios de Contraste/química , Meios de Contraste/farmacologia , Feminino , Compostos Férricos/química , Compostos Férricos/farmacologia , Humanos , Glândulas Mamárias Humanas/metabolismo , Polietilenoglicóis/química , Polietilenoglicóis/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA