Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell ; 82(11): 2084-2097.e5, 2022 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-35483357

RESUMO

Gene activation by mammalian transcription factors (TFs) requires multivalent interactions of their low-complexity domains (LCDs), but how such interactions regulate transcription remains unclear. It has been proposed that extensive LCD-LCD interactions culminating in liquid-liquid phase separation (LLPS) of TFs is the dominant mechanism underlying transactivation. Here, we investigated how tuning the amount and localization of LCD-LCD interactions in vivo affects transcription of endogenous human genes. Quantitative single-cell and single-molecule imaging reveals that the oncogenic TF EWS::FLI1 requires a narrow optimum of LCD-LCD interactions to activate its target genes associated with GGAA microsatellites. Increasing LCD-LCD interactions toward putative LLPS represses transcription of these genes in patient-derived cells. Likewise, ectopically creating LCD-LCD interactions to sequester EWS::FLI1 into a well-documented LLPS compartment, the nucleolus, inhibits EWS::FLI1-driven transcription and oncogenic transformation. Our findings show how altering the balance of LCD-LCD interactions can influence transcriptional regulation and suggest a potential therapeutic strategy for targeting disease-causing TFs.


Assuntos
Sarcoma de Ewing , Animais , Carcinogênese/genética , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Humanos , Mamíferos/metabolismo , Proteínas de Fusão Oncogênica/genética , Proteínas de Fusão Oncogênica/metabolismo , Proteína Proto-Oncogênica c-fli-1/genética , Proteína Proto-Oncogênica c-fli-1/metabolismo , Sarcoma de Ewing/tratamento farmacológico , Sarcoma de Ewing/genética , Ativação Transcricional/genética
2.
EMBO J ; 40(9): e107015, 2021 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-33555055

RESUMO

Eukaryotic RNA polymerase II (Pol II) contains a tail-like, intrinsically disordered carboxy-terminal domain (CTD) comprised of heptad-repeats, that functions in coordination of the transcription cycle and in coupling transcription to co-transcriptional processes. The CTD repeat number varies between species and generally increases with genome size, but the reasons for this are unclear. Here, we show that shortening the CTD in human cells to half of its length does not generally change pre-mRNA synthesis or processing in cells. However, CTD shortening decreases the duration of promoter-proximal Pol II pausing, alters transcription of putative enhancer elements, and delays transcription activation after stimulation of the MAP kinase pathway. We suggest that a long CTD is required for efficient enhancer-dependent recruitment of Pol II to target genes for their rapid activation.


Assuntos
RNA Polimerase II/química , RNA Polimerase II/metabolismo , Deleção de Sequência , Ativação Transcricional , Elementos Facilitadores Genéticos , Perfilação da Expressão Gênica , Humanos , Sistema de Sinalização das MAP Quinases , Regiões Promotoras Genéticas , Domínios Proteicos , RNA Polimerase II/genética
3.
Nat Methods ; 10(1): 60-3, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23223154

RESUMO

Conventional acquisition of three-dimensional (3D) microscopy data requires sequential z scanning and is often too slow to capture biological events. We report an aberration-corrected multifocus microscopy method capable of producing an instant focal stack of nine 2D images. Appended to an epifluorescence microscope, the multifocus system enables high-resolution 3D imaging in multiple colors with single-molecule sensitivity, at speeds limited by the camera readout time of a single image.


Assuntos
Caenorhabditis elegans/citologia , Rastreamento de Células , Imageamento Tridimensional/métodos , Microscopia de Fluorescência , Neurônios/citologia , Saccharomyces cerevisiae/citologia , Animais , Neoplasias Ósseas/enzimologia , Proteínas Cromossômicas não Histona/metabolismo , Proteínas de Ligação a DNA/metabolismo , Humanos , Osteossarcoma/enzimologia , RNA Polimerase II/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
4.
Wound Repair Regen ; 24(2): 247-62, 2016 03.
Artigo em Inglês | MEDLINE | ID: mdl-26663515

RESUMO

Fibroblasts are important players in regulating tissue homeostasis. In the dermis, they are involved in wound healing where they differentiate into contractile myofibroblasts leading to wound closure. In nonhealing chronic wounds, fibroblasts fail to undertake differentiation. We established and used a human ex vivo model of chronic wounds where fibroblasts can undergo normal myofibroblast differentiation, or take on a nondifferentiable pathological state. At the whole genome scale, we identified the genes that are differentially regulated in these two cell fates. By coupling the search of evolutionary conserved regulatory elements with global gene network expression changes, we identified transcription factors (TF) potentially involved in myofibroblast differentiation, and constructed a network of relationship between these key factors. Among these, we found that TCF4, SOX9, EGR2, and FOXS1 are major regulators of fibroblast to myofibroblast differentiation. Conversely, down-regulation of MEOX2, SIX2, and MAF causes reprogramming of fibroblasts to myofibroblasts even in absence of TGF-ß, the natural inducer of myofibroblast differentiation. These results provide insight into the fibroblast differentiation program and reveal a TF network essential for cellular reprogramming. They could lead to the development of new therapeutics to treat fibroblast-related human pathologies.


Assuntos
Reprogramação Celular/fisiologia , Miofibroblastos/citologia , Úlcera Varicosa/patologia , Cicatrização/fisiologia , Idoso , Idoso de 80 Anos ou mais , Diferenciação Celular , Células Cultivadas , Técnicas de Reprogramação Celular , Regulação para Baixo , Exsudatos e Transudatos/citologia , Humanos , Pessoa de Meia-Idade , RNA Interferente Pequeno/farmacologia , Fator de Crescimento Transformador beta/metabolismo
5.
Nat Struct Mol Biol ; 30(8): 1216-1223, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37291424

RESUMO

Subnuclear compartmentalization has been proposed to play an important role in gene regulation by segregating active and inactive parts of the genome in distinct physical and biochemical environments. During X chromosome inactivation (XCI), the noncoding Xist RNA coats the X chromosome, triggers gene silencing and forms a dense body of heterochromatin from which the transcription machinery appears to be excluded. Phase separation has been proposed to be involved in XCI, and might explain the exclusion of the transcription machinery by preventing its diffusion into the Xist-coated territory. Here, using quantitative fluorescence microscopy and single-particle tracking, we show that RNA polymerase II (RNAPII) freely accesses the Xist territory during the initiation of XCI. Instead, the apparent depletion of RNAPII is due to the loss of its chromatin stably bound fraction. These findings indicate that initial exclusion of RNAPII from the inactive X reflects the absence of actively transcribing RNAPII, rather than a consequence of putative physical compartmentalization of the inactive X heterochromatin domain.


Assuntos
RNA Polimerase II , RNA Longo não Codificante , RNA Polimerase II/metabolismo , Heterocromatina , Cromossomo X/genética , Cromossomo X/metabolismo , Inativação do Cromossomo X , Cromatina , RNA não Traduzido/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo
6.
Sci Rep ; 12(1): 18506, 2022 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-36323770

RESUMO

SARS coronavirus 2 (SARS-CoV-2) has caused an ongoing global pandemic with significant mortality and morbidity. At this time, the only FDA-approved therapeutic for COVID-19 is remdesivir, a broad-spectrum antiviral nucleoside analog. Efficacy is only moderate, and improved treatment strategies are urgently needed. To accomplish this goal, we devised a strategy to identify compounds that act synergistically with remdesivir in preventing SARS-CoV-2 replication. We conducted combinatorial high-throughput screening in the presence of submaximal remdesivir concentrations, using a human lung epithelial cell line infected with a clinical isolate of SARS-CoV-2. This identified 20 approved drugs that act synergistically with remdesivir, many with favorable pharmacokinetic and safety profiles. Strongest effects were observed with established antivirals, Hepatitis C virus nonstructural protein 5A (HCV NS5A) inhibitors velpatasvir and elbasvir. Combination with their partner drugs sofosbuvir and grazoprevir further increased efficacy, increasing remdesivir's apparent potency > 25-fold. We report that HCV NS5A inhibitors act on the SARS-CoV-2 exonuclease proofreader, providing a possible explanation for the synergy observed with nucleoside analog remdesivir. FDA-approved Hepatitis C therapeutics Epclusa® (velpatasvir/sofosbuvir) and Zepatier® (elbasvir/grazoprevir) could be further optimized to achieve potency and pharmacokinetic properties that support clinical evaluation in combination with remdesivir.


Assuntos
Tratamento Farmacológico da COVID-19 , Hepatite C , Humanos , SARS-CoV-2 , Antivirais/uso terapêutico , Sofosbuvir/farmacologia , Nucleosídeos/farmacologia , Monofosfato de Adenosina , Alanina , Hepacivirus , Hepatite C/tratamento farmacológico , Pulmão
7.
Curr Protoc ; 1(4): e130, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33905620

RESUMO

The most common method for RNA detection involves reverse transcription followed by quantitative polymerase chain reaction (RT-qPCR) analysis. Commercial one-step master mixes-which include both a reverse transcriptase and a thermostable polymerase and thus allow performing both the RT and qPCR steps consecutively in a sealed well-are key reagents for SARS-CoV-2 diagnostic testing; yet, these are typically expensive and have been affected by supply shortages in periods of high demand. As an alternative, we describe here how to express and purify Taq polymerase and M-MLV reverse transcriptase and assemble a homemade one-step RT-qPCR master mix. This mix can be easily assembled from scratch in any laboratory equipped for protein purification. We also describe two simple alternative methods to prepare clinical swab samples for SARS-CoV-2 RNA detection by RT-qPCR: heat-inactivation for direct addition, and concentration of RNA by isopropanol precipitation. Finally, we describe how to perform RT-qPCR using the homemade master mix, how to prepare in vitro-transcribed RNA standards, and how to use a fluorescence imager for endpoint detection of RT-PCR amplification in the absence of a qPCR machine In addition to being useful for diagnostics, these versatile protocols may be adapted for nucleic acid quantification in basic research. © 2021 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Preparation of a one-step RT-qPCR master mix using homemade enzymes Basic Protocol 2: Preparation of swab samples for direct RT-PCR Alternate Protocol 1: Concentration of RNA from swab samples by isopropanol precipitation Basic Protocol 3: One-step RT-qPCR of RNA samples using a real-time thermocycler Support Protocol: Preparation of RNA concentration standards by in vitro transcription Alternate Protocol 2: One-step RT-PCR using endpoint fluorescence detection.


Assuntos
Teste de Ácido Nucleico para COVID-19/métodos , COVID-19/diagnóstico , RNA Viral/isolamento & purificação , SARS-CoV-2/isolamento & purificação , COVID-19/virologia , Teste de Ácido Nucleico para COVID-19/economia , Precipitação Química , Humanos , RNA Viral/genética , SARS-CoV-2/genética , Fatores de Tempo
8.
Nat Struct Mol Biol ; 28(12): 989-996, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34811519

RESUMO

The SAGA complex is a regulatory hub involved in gene regulation, chromatin modification, DNA damage repair and signaling. While structures of yeast SAGA (ySAGA) have been reported, there are noteworthy functional and compositional differences for this complex in metazoans. Here we present the cryogenic-electron microscopy (cryo-EM) structure of human SAGA (hSAGA) and show how the arrangement of distinct structural elements results in a globally divergent organization from that of yeast, with a different interface tethering the core module to the TRRAP subunit, resulting in a dramatically altered geometry of functional elements and with the integration of a metazoan-specific splicing module. Our hSAGA structure reveals the presence of an inositol hexakisphosphate (InsP6) binding site in TRRAP and an unusual property of its pseudo-(Ψ)PIKK. Finally, we map human disease mutations, thus providing the needed framework for structure-guided drug design of this important therapeutic target for human developmental diseases and cancer.


Assuntos
Regulação da Expressão Gênica/genética , Histona Acetiltransferases/metabolismo , Elementos Reguladores de Transcrição/genética , Transcrição Gênica/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Sítios de Ligação , Linhagem Celular Tumoral , Cromatina/metabolismo , Microscopia Crioeletrônica , Células HeLa , Humanos , Proteínas Nucleares/metabolismo , Ácido Fítico/metabolismo , Regiões Promotoras Genéticas/genética , Conformação Proteica , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomycetales
9.
PLoS One ; 16(2): e0246647, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33534838

RESUMO

Re-opening of communities in the midst of the ongoing COVID-19 pandemic has ignited new waves of infections in many places around the world. Mitigating the risk of reopening will require widespread SARS-CoV-2 testing, which would be greatly facilitated by simple, rapid, and inexpensive testing methods. This study evaluates several protocols for RNA extraction and RT-qPCR that are simpler and less expensive than prevailing methods. First, isopropanol precipitation is shown to provide an effective means of RNA extraction from nasopharyngeal (NP) swab samples. Second, direct addition of NP swab samples to RT-qPCRs is evaluated without an RNA extraction step. A simple, inexpensive swab collection solution suitable for direct addition is validated using contrived swab samples. Third, an open-source master mix for RT-qPCR is described that permits detection of viral RNA in NP swab samples with a limit of detection of approximately 50 RNA copies per reaction. Quantification cycle (Cq) values for purified RNA from 30 known positive clinical samples showed a strong correlation (r2 = 0.98) between this homemade master mix and commercial TaqPath master mix. Lastly, end-point fluorescence imaging is found to provide an accurate diagnostic readout without requiring a qPCR thermocycler. Adoption of these simple, open-source methods has the potential to reduce the time and expense of COVID-19 testing.


Assuntos
COVID-19/diagnóstico , RNA Viral/análise , Reação em Cadeia da Polimerase em Tempo Real/métodos , SARS-CoV-2/genética , COVID-19/virologia , Teste de Ácido Nucleico para COVID-19 , Precipitação Química , Proteínas do Nucleocapsídeo de Coronavírus/genética , Humanos , Limite de Detecção , Nasofaringe/virologia , Fosfoproteínas/genética , RNA Viral/isolamento & purificação , RNA Viral/metabolismo , SARS-CoV-2/isolamento & purificação
10.
ACS Infect Dis ; 7(8): 2337-2351, 2021 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-34129317

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease 2019 (COVID-19), has emerged as a major global health threat. The COVID-19 pandemic has resulted in over 168 million cases and 3.4 million deaths to date, while the number of cases continues to rise. With limited therapeutic options, the identification of safe and effective therapeutics is urgently needed. The repurposing of known clinical compounds holds the potential for rapid identification of drugs effective against SARS-CoV-2. Here, we utilized a library of FDA-approved and well-studied preclinical and clinical compounds to screen for antivirals against SARS-CoV-2 in human pulmonary epithelial cells. We identified 13 compounds that exhibit potent antiviral activity across multiple orthogonal assays. Hits include known antivirals, compounds with anti-inflammatory activity, and compounds targeting host pathways such as kinases and proteases critical for SARS-CoV-2 replication. We identified seven compounds not previously reported to have activity against SARS-CoV-2, including B02, a human RAD51 inhibitor. We further demonstrated that B02 exhibits synergy with remdesivir, the only antiviral approved by the FDA to treat COVID-19, highlighting the potential for combination therapy. Taken together, our comparative compound screening strategy highlights the potential of drug repurposing screens to identify novel starting points for development of effective antiviral mono- or combination therapies to treat COVID-19.


Assuntos
Antivirais , COVID-19 , Antivirais/farmacologia , Humanos , Pandemias , SARS-CoV-2
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA