Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Alzheimers Dement ; 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38924651

RESUMO

INTRODUCTION: The established cerebrospinal fluid (CSF) phosphorylated tau181 (p-tau181) may not reliably reflect concomitant Alzheimer's disease (AD) and primary age-related tauopathy (PART) found in Creutzfeldt-Jakob disease (CJD) at autopsy. METHODS: We investigated CSF N-terminal p-tau181, p-tau217, and p-tau231 with in-house Simoa assays in definite CJD (n = 29), AD dementia (n = 75), mild cognitive impairment (MCI) due to AD (n = 65), and subjective cognitive decline (SCD, n = 28). Post-mortem examination performed in patients with CJD 1.3 (0.3-14.3) months after CSF collection revealed no co-pathology in 10, concomitant AD in 8, PART in 8, and other co-pathologies in 3 patients. RESULTS: N-terminal p-tau was increased in CJD versus SCD (p < 0.0001) and correlated with total tau (t-tau) in the presence of AD and PART co-pathology (rho = 0.758-0.952, p ≤ 001). Concentrations in CJD+AD were indistinguishable from AD dementia, with the largest fold-change in p-tau217 (11.6), followed by p-tau231 and p-tau181 (3.2-4.5). DISCUSSION: Variable fold-changes and correlation with t-tau suggest that p-tau closely associates with neurodegeneration and concomitant AD in CJD. HIGHLIGHTS: N-terminal phosphorylated tau (p-tau) biomarkers are increased in Creutzfeldt-Jakob disease (CJD) with and without concomitant AD. P-tau217, p-tau231, and p-tau181 correlate with total tau (t-tau) and increase in the presence of amyloid beta (Aß) co-pathology. N-terminal p-tau181 and p-tau231 in Aß-negative CJD show variation among PRNP genotypes. Compared to mid-region-targeting p-tau181, cerebrospinal fluid (CSF) N-terminal p-tau has greater potential to reflect post-mortem neuropathology in the CJD brain.

2.
Int J Mol Sci ; 25(14)2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-39062786

RESUMO

Recent investigations implicate neuroinflammatory changes, including astrocyte and microglia activation, as crucial in the progression of Alzheimer's disease (AD) Thus, we compared selected proteins reflecting neuroinflammatory processes to establish their connection to AD pathologies. Our study, encompassing 80 subjects with (n = 42) AD, (n = 18) mild cognitive impairment (MCI) and (n = 20) non-demented controls compares the clinical potential of tested molecules. Using antibody-based methods, we assessed concentrations of NGAL, CXCL-11, sTREM1, and sTREM2 in cerebrospinal fluid (CSF). Proinflammatory proteins, NGAL, and CXCL-11 reached a peak in the early stage of the disease and allowed for the identification of patients with MCI. Furthermore, the concentration of the anti-inflammatory molecule sTREM2 was highest in the more advanced stage of the disease and permitted differentiation between AD and non-demented controls. Additionally, sTREM2 was biochemically linked to tau and pTau in the AD group. Notably, NGAL demonstrated superior diagnostic performance compared to classical AD biomarkers in discriminating MCI patients from controls. These findings suggest that proteins secreted mainly through microglia dysfunction might play not only a detrimental but also a protective role in the development of AD pathology.


Assuntos
Doença de Alzheimer , Astrócitos , Biomarcadores , Disfunção Cognitiva , Lipocalina-2 , Glicoproteínas de Membrana , Microglia , Proteínas tau , Humanos , Doença de Alzheimer/metabolismo , Doença de Alzheimer/líquido cefalorraquidiano , Doença de Alzheimer/diagnóstico , Proteínas tau/líquido cefalorraquidiano , Proteínas tau/metabolismo , Biomarcadores/líquido cefalorraquidiano , Masculino , Feminino , Idoso , Microglia/metabolismo , Microglia/patologia , Disfunção Cognitiva/metabolismo , Disfunção Cognitiva/líquido cefalorraquidiano , Disfunção Cognitiva/diagnóstico , Astrócitos/metabolismo , Lipocalina-2/líquido cefalorraquidiano , Lipocalina-2/metabolismo , Glicoproteínas de Membrana/metabolismo , Glicoproteínas de Membrana/líquido cefalorraquidiano , Receptores Imunológicos/metabolismo , Idoso de 80 Anos ou mais , Pessoa de Meia-Idade
3.
Anal Chem ; 95(10): 4692-4702, 2023 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-36856542

RESUMO

Beta-amyloid (Aß) plaque pathology is one of the most prominent histopathological feature of Alzheimer's disease (AD). The exact pathogenic mechanisms linking Aß to AD pathogenesis remain however not fully understood. Recent advances in amyloid-targeting pharmacotherapies highlight the critical relevance of Aß aggregation for understanding the molecular basis of AD pathogenesis. We developed a novel, integrated, tetramodal chemical imaging paradigm for acquisition of trimodal mass spectrometry imaging (MSI) and interlaced fluorescent microscopy from a single tissue section. We used this approach to comprehensively investigate lipid-Aß correlates at single plaques in two different mouse models of AD (tgAPPSwe and tgAPPArcSwe) with varying degrees of intrinsic properties affecting amyloid aggregation. Integration of the multimodal imaging data and multivariate data analysis identified characteristic patterns of plaque-associated lipid- and peptide localizations across both mouse models. Correlative fluorescence microscopy using structure-sensitive amyloid probes identified intra-plaque structure-specific lipid- and Aß patterns, including Aß 1-40 and Aß 1-42 along with gangliosides (GM), phosphoinositols (PI), conjugated ceramides (CerP and PE-Cer), and lysophospholipids (LPC, LPA, and LPI). Single plaque correlation analysis across all modalities further revealed how these distinct lipid species were associated with Aß peptide deposition across plaque heterogeneity, indicating different roles for those lipids in plaque growth and amyloid fibrillation, respectively. Here, conjugated ceramide species correlated with Aß core formation indicating their involvement in initial plaque seeding or amyloid maturation. In contrast, LPI and PI were solely correlated with general plaque growth. In addition, GM1 and LPC correlated with continuous Aß deposition and maturation. The results highlight the potential of this comprehensive multimodal imaging approach and implement distinct lipids in amyloidogenic proteinopathy.


Assuntos
Doença de Alzheimer , Camundongos , Animais , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/patologia , Camundongos Transgênicos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Peptídeos beta-Amiloides/química , Modelos Animais de Doenças , Placa Amiloide/diagnóstico por imagem , Placa Amiloide/patologia , Lipídeos , Encéfalo/metabolismo
4.
Int J Mol Sci ; 24(17)2023 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-37685973

RESUMO

In addition to amyloid and tau pathology in the central nervous system (CNS), inflammatory processes and synaptic dysfunction are highly important mechanisms involved in the development and progression of dementia diseases. In the present study, we conducted a comparative analysis of selected pro-inflammatory proteins in the CNS with proteins reflecting synaptic damage and core biomarkers in mild cognitive impairment (MCI) and early Alzheimer's disease (AD). To our knowledge, no studies have yet compared CXCL12 and CX3CL1 with markers of synaptic disturbance in cerebrospinal fluid (CSF) in the early stages of dementia. The quantitative assessment of selected proteins in the CSF of patients with MCI, AD, and non-demented controls (CTRL) was performed using immunoassays (single- and multiplex techniques). In this study, increased CSF concentration of CX3CL1 in MCI and AD patients correlated positively with neurogranin (r = 0.74; p < 0.001, and r = 0.40; p = 0.020, respectively), ptau181 (r = 0.49; p = 0.040), and YKL-40 (r = 0.47; p = 0.050) in MCI subjects. In addition, elevated CSF levels of CXCL12 in the AD group were significantly associated with mini-mental state examination score (r = -0.32; p = 0.040). We found significant evidence to support an association between CX3CL1 and neurogranin, already in the early stages of cognitive decline. Furthermore, our findings indicate that CXCL12 might be a useful marker for tract severity of cognitive impairment.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/diagnóstico , Doença de Alzheimer/metabolismo , Biomarcadores , Sistema Nervoso Central , Quimiocina CXCL12 , Proteína 1 Semelhante à Quitinase-3 , Neurogranina , Quimiocina CX3CL1
5.
Int J Mol Sci ; 23(18)2022 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-36142780

RESUMO

Synaptic loss and dysfunction are one of the earliest signs of neurodegeneration associated with cognitive decline in Alzheimer's disease (AD) and other neurodegenerative diseases. This study aimed to assess the relationships between biological processes of the synaptic pathology underlying AD, molecular functions, and dynamics of the change concentrations of selected proteins reflecting synaptic and axonal pathology in dementia stages. Neurogranin (Ng), neuronal pentraxin receptor (NPTXR), and Visinin-like protein 1 (VILIP1) concentrations were measured in the cerebrospinal fluid (CSF) of MCI, AD, and non-demented controls (CTRL) using quantitative immunological methods. Gene ontology (GO) enrichment analysis was used for the functional analysis of tested proteins. The CSF Aß42/Ng ratio was significantly different between all the compared groups. The CSF NPTXR/Ng ratio was significantly different between MCI compared to CTRL and AD compared to CTRL. The GO enrichment analysis revealed that two terms (the Biological Process (BP) and Cellular Component (CC) levels) are significantly enriched for NPTXR and Ng but not for VILIP1. Both Ng and NPTXR concentrations in CSF are promising synaptic dysfunction biomarkers for the early diagnosis of the disease. Moreover, both proteins are biochemically associated with classical biomarkers and VILIP-1. Mapping shared molecular and biological functions for the tested proteins by GO enrichment analysis may be beneficial in screening and setting new research targets.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Biomarcadores/líquido cefalorraquidiano , Disfunção Cognitiva/complicações , Biologia Computacional , Humanos , Neurocalcina/líquido cefalorraquidiano , Neurogranina/metabolismo , Fragmentos de Peptídeos/metabolismo , Proteínas tau/metabolismo
6.
Int J Mol Sci ; 23(15)2022 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-35955728

RESUMO

Alzheimer's disease (AD) is a progressive condition and the most common cause of dementia worldwide. The neuropathological changes characteristic of the disorder can be successfully detected before the development of full-blown AD. Early diagnosis of the disease constitutes a formidable challenge for clinicians. CSF biomarkers are the in vivo evidence of neuropathological changes developing in the brain of dementia patients. Therefore, measurement of their concentrations allows for improved accuracy of clinical diagnosis. Moreover, AD biomarkers may provide an indication of disease stage. Importantly, the CSF biomarkers of AD play a pivotal role in the new diagnostic criteria for the disease, and in the recent biological definition of AD by the National Institute on Aging, NIH and Alzheimer's Association. Due to the necessity of collecting CSF by lumbar puncture, the procedure seems to be an important issue not only from a medical, but also a legal, viewpoint. Furthermore, recent technological advances may contribute to the automation of AD biomarkers measurement and may result in the establishment of unified cut-off values and reference limits. Moreover, a group of international experts in the field of AD biomarkers have developed a consensus and guidelines on the interpretation of CSF biomarkers in the context of AD diagnosis. Thus, technological advancement and expert recommendations may contribute to a more widespread use of these diagnostic tests in clinical practice to support a diagnosis of mild cognitive impairment (MCI) or dementia due to AD. This review article presents up-to-date data regarding the usefulness of CSF biomarkers in routine clinical practice and in biomarkers research.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Doença de Alzheimer/diagnóstico , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides , Biomarcadores , Encéfalo/patologia , Disfunção Cognitiva/diagnóstico , Disfunção Cognitiva/patologia , Diagnóstico Precoce , Humanos , Proteínas tau
7.
Int J Mol Sci ; 22(19)2021 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-34638718

RESUMO

Despite the considerable advances in diagnostic methods in medicine, central nervous system (CNS) tumors, particularly the most common ones-gliomas-remain incurable, with similar incidence rates and mortality. A growing body of literature has revealed that degradation of the extracellular matrix by matrix metalloproteinases (MMPs) might be involved in the pathogenesis of CNS tumors. However, the subfamily of MMPs, known as disintegrin and metalloproteinase (ADAM) proteins are unique due to both adhesive and proteolytic activities. The objective of our review is to present the role of ADAMs in CNS tumors, particularly their involvement in the development of malignant gliomas. Moreover, we focus on the diagnostic and prognostic significance of selected ADAMs in patients with these neoplasms. It has been proven that ADAM12, ADAMTS4 and 5 are implicated in the proliferation and invasion of glioma cells. In addition, ADAM8 and ADAM19 are correlated with the invasive activity of glioma cells and unfavorable survival, while ADAM9, -10 and -17 are associated with tumor grade and histological type of gliomas and can be used as prognostic factors. In conclusion, several ADAMs might serve as potential diagnostic and prognostic biomarkers as well as therapeutic targets for malignant CNS tumors. However, future research on ADAMs biology should be performed to elucidate new strategies for tumor diagnosis and treatment of patients with these malignancies.


Assuntos
Proteínas ADAM/metabolismo , Biomarcadores Tumorais/metabolismo , Proliferação de Células , Neoplasias do Sistema Nervoso Central , Glioma , Proteínas de Neoplasias/metabolismo , Animais , Neoplasias do Sistema Nervoso Central/diagnóstico , Neoplasias do Sistema Nervoso Central/enzimologia , Neoplasias do Sistema Nervoso Central/patologia , Neoplasias do Sistema Nervoso Central/terapia , Glioma/diagnóstico , Glioma/enzimologia , Glioma/patologia , Glioma/terapia , Humanos , Gradação de Tumores , Invasividade Neoplásica
8.
Int J Mol Sci ; 22(9)2021 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-33924890

RESUMO

Reticulons (RTNs) are crucial regulatory factors in the central nervous system (CNS) as well as immune system and play pleiotropic functions. In CNS, RTNs are transmembrane proteins mediating neuroanatomical plasticity and functional recovery after central nervous system injury or diseases. Moreover, RTNs, particularly RTN4 and RTN3, are involved in neurodegeneration and neuroinflammation processes. The crucial role of RTNs in the development of several neurodegenerative diseases, including Alzheimer's disease (AD), multiple sclerosis (MS), amyotrophic lateral sclerosis (ALS), or other neurological conditions such as brain injury or spinal cord injury, has attracted scientific interest. Reticulons, particularly RTN-4A (Nogo-A), could provide both an understanding of early pathogenesis of neurodegenerative disorders and be potential therapeutic targets which may offer effective treatment or inhibit disease progression. This review focuses on the molecular mechanisms and functions of RTNs and their potential usefulness in clinical practice as a diagnostic tool or therapeutic strategy.


Assuntos
Proteínas de Transporte/metabolismo , Proteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Doenças Neurodegenerativas/metabolismo , Proteínas Nogo/metabolismo , Animais , Humanos , Terapia de Alvo Molecular , Doenças Neurodegenerativas/diagnóstico , Doenças Neurodegenerativas/terapia
9.
Int J Mol Sci ; 21(21)2020 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-33172069

RESUMO

Neurogranin (Ng) and visinin-like protein 1 (VILIP-1) are promising candidates for Alzheimer's Disease (AD) biomarkers closely related to synaptic and neuronal degeneration. Both proteins are involved in calcium-mediated pathways. The meta-analysis was performed in random effects based on the ratio of means (RoM) with calculated pooled effect size. The diagnostic utility of these proteins was examined in cerebrospinal fluid (CSF) of patients in different stages of AD compared to control (CTRL). Ng concentration was also checked in various groups with positive (+) and negative (-) amyloid beta (Aß). Ng highest levels of RoM were observed in the AD (n = 1894) compared to CTRL (n = 2051) group (RoM: 1.62). Similarly, the VILIP-1 highest values of RoM were detected in the AD (n = 706) compared to CTRL (n = 862) group (RoM: 1.34). Concentrations of both proteins increased in more advanced stages of AD. However, Ng seems to be an earlier biomarker for the assessment of cognitive impairment. Ng appears to be related with amyloid beta, and the highest levels of Ng in CSF was observed in the group with pathological Aß+ status. Our meta-analysis confirms that Ng and VILIP-1 can be useful CSF biomarkers in differential diagnosis and monitoring progression of cognitive decline. Although, an additional advantage of the protein concentration Ng is the possibility of using it to predict the risk of developing cognitive impairment in normal controls with pathological levels of Aß1-42. Analyses in larger cohorts are needed, particularly concerning Aß status.


Assuntos
Doença de Alzheimer/fisiopatologia , Neurocalcina/metabolismo , Neurogranina/metabolismo , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/líquido cefalorraquidiano , Biomarcadores/líquido cefalorraquidiano , Disfunção Cognitiva/líquido cefalorraquidiano , Diagnóstico Diferencial , Progressão da Doença , Humanos , Neurocalcina/líquido cefalorraquidiano , Neurocalcina/fisiologia , Doenças Neurodegenerativas/fisiopatologia , Neurogranina/líquido cefalorraquidiano , Neurogranina/fisiologia , Fragmentos de Peptídeos/líquido cefalorraquidiano , Curva ROC , Proteínas tau/líquido cefalorraquidiano
10.
Int J Mol Sci ; 21(6)2020 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-32183332

RESUMO

Alzheimer's disease (AD) is one of the most frequent neurodegenerative diseases affecting more than 35 million people in the world, and its incidence is estimated to triple by 2050. Alzheimer's disease is an age-related disease characterized by the progressive loss of memory and cognitive function, caused by the unstoppable neurodegeneration and brain atrophy. Current AD treatments only relieve the symptoms. The first molecular signs of the disease identified decades ago and were related to the tau neurofibrillary tangles and the ß amyloid plaques. Despite the considerable progress in the diagnostic field, there is no certain knowledge of the specific biomarkers reflecting molecular mechanisms that trigger the symptoms of the disease. Therefore, there is an enormous need to find biomarkers useful for early diagnosis, before the first symptoms appear, and develop new therapeutic targets, which would guarantee improving patients' quality of life. Researchers from all around the world are looking for biomarkers that can be identified in different biological fluids such as plasma, serum, and cerebrospinal fluid, specific for Alzheimer's disease. In this review, we would like to resume some of the most interesting discovery in pathological mechanisms underlying Alzheimer's disease and promising biomarkers.


Assuntos
Doença de Alzheimer/diagnóstico , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/análise , Proteínas de Neurofilamentos/análise , Neurogranina/líquido cefalorraquidiano , Proteínas tau/análise , Biomarcadores/análise , Encéfalo/patologia , Humanos , Placa Amiloide/patologia
11.
Biomedicines ; 12(4)2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38672087

RESUMO

BACKGROUND: Many epigenetic factors, including microRNAs, are involved in the process of changing gene expressions. Small non-coding RNA molecules, called miRNAs, are responsible for regulating gene translation by silencing or degrading target mRNAs. It is acknowledged that for many diseases, they may be novel diagnostic and prognostic biomarkers. Patients with autoimmune thyroid diseases are more likely to develop nodules in the thyroid tissue, and Hashimoto's thyroiditis and Graves' disease predispose patients to thyroid cancer. We evaluated the concentrations of microRNA molecules (miR-15a-5p, miR-126-3p, miR-142-5p, miR-21-5p, miR-150-5p) in the blood of children with thyroid disorders. In addition, we wished to identify molecules whose change in concentration predisposes to the development of thyroid cancer. AIM: The aim of this study is to evaluate selected epigenetic elements by analyzing the levels of miR-15a-5p, miR-126-3p, miR-142-5p, miR-150-5p and miR-21-5p in the blood of pediatric patients with Graves' disease (n = 25), Hashimoto's thyroiditis (n = 26) and thyroid nodular disease (n = 20) compared to a control group of healthy children (n = 17). MATERIALS AND METHODS: The study consists of groups of children and adolescents aged 10-18 years with autoimmune thyroid disease, with thyroid nodular disease compared to a control group. The miR-15a-5p, miR-126-3p, miR-142-5p, miR-21-5p and miR-150-5p molecules were determined through an immunoenzymatic assay using BioVendor reagents. RESULTS: There is a statistically significant decrease in the expression of the miR-15a-5p in children with Graves' disease (21.61 vs. 50.22 amol/µL, p = 0.03) and in patients with thyroid nodular disease compared to controls (20.23 vs. 50.22 amol/µL, p = 0.04). Higher levels of the miR-142-5p molecule are found in patients with thyroid disease (with GD-3.8 vs. 3.14 amol/µL, p = 0.01; with HT-3.7 vs. 3.14 amol/µL, p = NS, with thyroid nodular disease-4.16 vs. 3.14 amol/µL, p = 0.04). Lower levels of miR-126-3p were noted in the GD group compared to the control group (7.09 vs. 7.24 amol/µL, p = 0.02). No statistically significant changes in the expressions of miR-150-5p and miR-21-5p molecules were observed in the study groups. CONCLUSIONS: 1. The overexpression of the miR-142-5p molecule occurs in children and adolescents with thyroid diseases. 2. Decreased blood levels of miR-15a-5p predispose patients to the formation of focal lesions in the thyroid gland. 3. Identifying a lower expression of the miR-126-3p molecule in the blood of children with GD requires careful follow-up for the development of focal lesions in the thyroid gland and evaluation for their potential malignancy.

12.
bioRxiv ; 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38895368

RESUMO

Amyloid plaque deposition is recognized as the primary pathological hallmark of Alzheimer's disease(AD) that precedes other pathological events and cognitive symptoms. Plaque pathology represents itself with an immense polymorphic variety comprising plaques with different stages of amyloid fibrillization ranging from diffuse to fibrillar, mature plaques. The association of polymorphic Aß plaque pathology with AD pathogenesis, clinical symptoms and disease progression remains unclear. Advanced chemical imaging tools, such as functional amyloid microscopy combined with MALDI mass spectrometry imaging (MSI), are now enhanced by deep learning algorithms. This integration allows for precise delineation of polymorphic plaque structures and detailed identification of their associated Aß compositions. We here set out to make use of these tools to interrogate heterogenic plaque types and their associated biochemical architecture. Our findings reveal distinct Aß signatures that differentiate diffuse plaques from fibrilized ones, with the latter showing substantially higher levels of Aßx-40. Notably, within the fibrilized category, we identified a distinct subtype known as coarse-grain plaques. Both in sAD and fAD brain tissue, coarse grain plaques contained more Aßx-40 and less Aßx-42 compared with cored plaques. The coarse grain plaques in both sAD and fAD also showed higher levels of neuritic content including paired helical filaments (PHF-1)/phosphorylated phospho Tau-immunopositive neurites. Finally, the Aß peptide content in coarse grain plaques resembled that of vascular Aß deposits (CAA) though with relatively higher levels of Aß1-42 and pyroglutamated Aßx-40 and Aßx-42 species in coarse grain plaques. This is the first of its kind study on spatial in situ biochemical characterization of different plaque morphotypes demonstrating the potential of the correlative imaging techniques used that further increase the understanding of heterogeneous AD pathology. Linking the biochemical characteristics of amyloid plaque polymorphisms with various AD etiologies and toxicity mechanisms is crucial. Understanding the connection between plaque structure and disease pathogenesis can enhance our insights. This knowledge is particularly valuable for developing and advancing novel, amyloid-targeting therapeutics.

13.
Nat Commun ; 15(1): 2615, 2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38521766

RESUMO

Blood phosphorylated tau (p-tau) biomarkers, including p-tau217, show high associations with Alzheimer's disease (AD) neuropathologic change and clinical stage. Certain plasma p-tau217 assays recognize tau forms phosphorylated additionally at threonine-212, but the contribution of p-tau212 alone to AD is unknown. We developed a blood-based immunoassay that is specific to p-tau212 without cross-reactivity to p-tau217. Here, we examined the diagnostic utility of plasma p-tau212. In five cohorts (n = 388 participants), plasma p-tau212 showed high performances for AD diagnosis and for the detection of both amyloid and tau pathology, including at autopsy as well as in memory clinic populations. The diagnostic accuracy and fold changes of plasma p-tau212 were similar to those for p-tau217 but higher than p-tau181 and p-tau231. Immunofluorescent staining of brain tissue slices showed prominent p-tau212 reactivity in neurofibrillary tangles that co-localized with p-tau217 and p-tau202/205. These findings support plasma p-tau212 as a peripherally accessible biomarker of AD pathophysiology.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/diagnóstico , Neuropatologia , Plasma , Emaranhados Neurofibrilares , Autopsia , Proteínas tau , Biomarcadores , Peptídeos beta-Amiloides
14.
J Clin Med ; 12(14)2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37510803

RESUMO

Alzheimer's disease (AD) is a very common neurodegenerative disorder characterized by the gradual loss of neurons and extracellular amyloid-peptide buildup. There is compelling evidence that the disease process depends on neuroinflammatory alterations, such as the activation of astrocytes and microglia cells. A transmembrane glycoprotein known as glycoprotein nonmetastatic melanoma protein B (GPNMB) plays a neuroprotective role during the development of neurodegeneration. To the best of our knowledge, this is the first investigation discussing the potential clinical usefulness of this protein in the AD continuum, especially in the MCI (mild cognitive impairment) stage. A total of 71 patients with AD or MCI as well as controls were enrolled in this study. The concentrations of GPNMB, YKL-40, Aß1-42 (amyloid beta 1-42), Tau, and pTau and the Aß1-42/1-40 ratio in the CSF (cerebrospinal fluid) were tested using immunological methods. The concentrations of both GPNMB and YKL-40 in the cerebrospinal fluid were significantly higher in patients with AD and MCI compared to the controls. Moreover, both proteins were biochemically associated with classical biomarkers of AD and were especially associated with the Aß1-42/1-40 ratio and Tau and pTau levels in the whole study group. Elevated concentrations of GPNMB were observed in the Aß(+) group of AD patients compared to the Aß(-) subjects. Additionally, the diagnostic performance (AUC value) of GPNMB was higher than that of amyloid ß1-42 in MCI patients compared with controls. Our study indicates that GPNMB might be a promising neuroinflammatory biomarker for the early diagnosis and prognosis of the AD continuum, with potential utility as a therapeutic target.

15.
Sci Rep ; 13(1): 17688, 2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37848726

RESUMO

Experts emphasize that colorectal cancer (CRC) incidence and mortality are increasing. That is why its early detection is of the utmost importance. Patients with cancer diagnosed in earlier stages have a better prognosis and a chance for faster implementation of treatment. Consequently, it is vital to search for new parameters that could be useful in its diagnosis. Therefore, we evaluated the usefulness of CXCL5, CXCL14 and CXCL16 in serum of 115 participants (75 CRC patients and 40 healthy volunteers). Concentrations of all parameters were measured using Luminex. CRP (C-reactive protein) levels were determined by immunoturbidimetry, while levels of classical tumor markers were measured using CMIA (Chemiluminescence Microparticle Immunoassay). Concentrations of CXCL5 were statistically higher in the CRC group when compared to healthy controls. The diagnostic sensitivity, specificity, positive and negative predictive value, and area under the ROC curve (AUC) of CXCL5 and CXCL14 were higher than those of CA 19-9. Obtained results suggest the usefulness of CXCL5 and CXCL16 in the determination of distant metastases and differentiation between TNM (Tumor-Node-Metastasis) stages, as well as the usefulness of CXCL14 and CRP combination in CRC detection (primary or recurrence). However, further studies concerning their role in CRC progression are crucial to confirm and explain their diagnostic utility and clinical application as biomarkers.


Assuntos
Neoplasias Colorretais , Humanos , Biomarcadores Tumorais/sangue , Biomarcadores Tumorais/metabolismo , Antígeno CA-19-9 , Quimiocina CXCL16 , Quimiocina CXCL5 , Quimiocinas CXC , Neoplasias Colorretais/sangue , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Prognóstico , Curva ROC
16.
JAMA Netw Open ; 6(7): e2321554, 2023 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-37399012

RESUMO

Importance: Blood-based measurements of total tau (T-tau) are commonly used to examine neuronal injury in patients with traumatic brain injury (TBI), but current assays do not differentiate between brain-derived tau (BD-tau) and tau produced in peripheral tissues. A novel assay for BD-tau has recently been reported that selectively quantifies nonphosphorylated tau of central nervous system origin in blood samples. Objectives: To examine the association of serum BD-tau with clinical outcomes in patients with severe TBI (sTBI) and its longitudinal changes over 1 year. Design, Setting, and Participants: This prospective cohort study was conducted at the neurointensive unit at the Sahlgrenska University Hospital, Gothenburg, Sweden, between September 1, 2006, and July 1, 2015. The study included 39 patients with sTBI followed up for up to 1 year. Statistical analysis was performed between October and November 2021. Exposures: Serum BD-tau, T-tau, phosphorylated tau231 (p-tau231), and neurofilament light chain (NfL) measured on days 0, 7, and 365 after injury. Main Outcomes and Measures: Associations of serum biomarkers with clinical outcome and longitudinal change in sTBI. Severity of sTBI was evaluated using the Glasgow Coma Scale at hospital admission, while clinical outcome was assessed with the Glasgow Outcome Scale (GOS) at 1-year follow-up. Participants were classified as having a favorable outcome (GOS score, 4-5) or unfavorable outcome (GOS score, 1-3). Results: Among the 39 patients (median age at admission, 36 years [IQR, 22-54 years]; 26 men [66.7%]) in the study on day 0, the mean (SD) serum BD-tau level was higher among patients with unfavorable outcomes vs those with favorable outcomes (191.4 [190.8] pg/mL vs 75.6 [60.3] pg/mL; mean difference, 115.9 pg/mL [95% CI, 25.7-206.1 pg/mL]), while the other markers had smaller between-group mean differences (serum T-tau, 60.3 pg/mL [95% CI, -22.0 to 142.7 pg/mL]; serum p-tau231, 8.3 pg/mL [95% CI, -6.4 to 23.0 pg/mL]; serum NfL, -5.4 pg/mL [95% CI, -99.0 to 88.3 pg/mL]). Similar results were recorded on day 7. Longitudinally, baseline serum BD-tau concentrations showed slower decreases in the whole cohort (42.2% on day 7 [from 138.6 to 80.1 pg/mL] and 93.0% on day 365 [from 138.6 to 9.7 pg/mL]) compared with serum T-tau (81.5% on day 7 [from 57.3 to 10.6 pg/mL] and 99.0% on day 365 [from 57.3 to 0.6 pg/mL]) and p-tau231 (92.5% on day 7 [from 20.1 to 1.5 pg/mL] and 95.0% on day 365 [from 20.1 to 1.0 pg/mL]). These results did not change when considering clinical outcome, where T-tau decreased twice as fast as BD-tau in both groups. Similar results were obtained for p-tau231. Furthermore, the biomarker levels on day 365 were lower, compared with day 7, for BD-tau but not T-tau or p-tau231. Serum NfL had a different trajectory to the tau biomarkers, with levels increasing by 255.9% on day 7 compared with day 0 (from 86.8 to 308.9 pg/mL) but decreasing by 97.0% by day 365 vs day 7 (from 308.9 to 9.2 pg/mL). Conclusions and Relevance: This study suggests that serum BD-tau, T-tau, and p-tau231 have differential associations with clinical outcome and 1-year longitudinal change in patients with sTBI. Serum BD-tau demonstrated utility as a biomarker to monitor outcomes in sTBI and can provide valuable information regarding acute neuronal damage.


Assuntos
Lesões Encefálicas Traumáticas , Adulto , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem , Biomarcadores , Encéfalo , Escala de Coma de Glasgow , Estudos Prospectivos , Feminino
17.
medRxiv ; 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38168323

RESUMO

Blood phosphorylated tau (p-tau) biomarkers, including p-tau217, show high associations with Alzheimer's disease (AD) neuropathologic change and clinical stage. Certain plasma p-tau217 assays recognize tau forms phosphorylated additionally at threonine-212, but the contribution of p-tau212 alone to AD is unknown. We developed a blood-based immunoassay that is specific to p-tau212 without cross-reactivity to p-tau217. Thereafter, we examined the diagnostic utility of plasma p-tau212. In five cohorts (n=388 participants), plasma p-tau212 showed high performances for AD diagnosis and for the detection of both amyloid and tau pathology, including at autopsy as well as in memory clinic populations. The diagnostic accuracy and fold changes of plasma p-tau212 were similar to those for p-tau217 but higher than p-tau181 and p-tau231. Immunofluorescent staining of brain tissue slices showed prominent p-tau212 reactivity in neurofibrillary tangles that co-localized with p-tau217 and p-tau202/205. These findings support plasma p-tau212 as a novel peripherally accessible biomarker of AD pathophysiology.

18.
J Clin Med ; 11(7)2022 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-35407400

RESUMO

Colorectal cancer (CRC) is one of the most frequently diagnosed neoplasms. Despite the advances in diagnostic tools and treatments, the number of CRC cases is increasing. Therefore, it is vital to search for new parameters that could be useful in its diagnosis. Thus, we wanted to assess the usefulness of selected CC chemokines (CCL2, CCL4, and CCL15) in CRC. The study included 115 subjects (75 CRC patients and 40 healthy volunteers). The serum concentrations of all parameters were measured using a multiplexing method (Luminex). The CRP levels were determined by immunoturbidimetry, and the classical tumor markers (CEA and CA 19-9) were measured using CMIA (chemiluminescent microparticle immunoassay). The concentrations of all parameters were higher in the CRC group when compared to the healthy controls. The diagnostic sensitivity, specificity, positive and negative predictive value, and area under the ROC curve (AUC) of all estimated CC chemokines were higher than those of CA 19-9. Interestingly, the obtained results also suggest CCL2's significance in the determination of local metastases and CCL4's significance in the determination of distant metastases. However, further studies concerning the role of selected CC chemokines in the course of colorectal cancer are necessary to confirm and to fully clarify their diagnostic utility and their clinical application as markers of CRC development.

19.
J Clin Med ; 11(14)2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35887886

RESUMO

BACKGROUND: Given the significant role of neurodegeneration in the progression of multiple sclerosis (MS) and insufficient therapies, there is an urgent need to better understand this pathology and to find new biomarkers that could provide important insight into the biological mechanisms of the disease. Thus, the present study aimed to compare different neurodegeneration and axonal dysfunction biomarkers in MS and verify their potential clinical usefulness. METHODS: A total of 59 patients, who underwent CSF analysis during their diagnostics, were enrolled in the study. Quantitative analysis of neurodegeneration biomarkers was performed through immunological tests. Oligoclonal bands were detected by isoelectric focusing on agarose gel, whereas the concentrations of immunoglobulins and albumin were measured using nephelometry. RESULTS: Our studies showed that NfL, RTN4, and tau protein enabled the differentiation of MS patients from the control group. Additionally, the baseline CSF NfL levels positively correlated with the tau and MRI results, whereas the RTN4 concentrations were associated with the immunoglobulin quotients. The AUC for NfL was the highest among the tested proteins, although the DeLong test of the ROC curves showed no significant difference between the AUCs for NfL and RTN4. CONCLUSION: The CSF NfL, RTN-4, and tau levels at the time of diagnosis could be potential diagnostic markers of multiple sclerosis, although NfL seems to have the best clinical value.

20.
J Clin Med ; 10(14)2021 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-34300173

RESUMO

BACKGROUND: Lipid metabolism-related biomarkers gain increasing researchers interest in the field of neurodegenerative disorders. Mounting evidence have indicated the role of fatty acid-binding proteins and pathology lipid metabolism in Alzheimer's Disease (AD). The imbalance of fatty acids (FA) and lipids may negatively affect brain functions related to neurodegenerative disorders. The ApoE4 and FABP3 proteins may reflect processes leading to neurodegeneration. This study aimed to evaluate the relationship between the CSF levels of FABP3 and ApoE4 proteins and cognitive decline as well as the diagnostic performance of these candidate biomarkers in AD and mild cognitive impairment (MCI). METHODS: A total of 70 subjects, including patients with AD, MCI, and non-demented controls, were enrolled in the study. CSF concentrations of FABP3 and ApoE4 were measured using immunoassay technology. RESULTS: Significantly higher CSF concentrations of FABP3 and ApoE4 were observed in AD patients compared to MCI subjects and individuals without cognitive impairment. Both proteins were inversely associated with Aß42/40 ratio: ApoE4 (rho = -0.472, p < 0.001), and FABP3 (rho = -0.488, p < 0.001) in the whole study group, respectively. Additionally, FABP3 was negatively correlated with Mini-Mental State Examination score in the whole study cohort (rho = -0.585 p < 0.001). CONCLUSION: Presented results indicate the pivotal role of FABP3 and ApoE4 in AD pathology as lipid-related biomarkers, but studies on larger cohorts are needed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA