Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Photoacoustics ; 30: 100463, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36874592

RESUMO

Using time-resolved x-ray diffraction, we demonstrate the manipulation of the picosecond strain response of a metallic heterostructure consisting of a dysprosium (Dy) transducer and a niobium (Nb) detection layer by an external magnetic field. We utilize the first-order ferromagnetic-antiferromagnetic phase transition of the Dy layer, which provides an additional large contractive stress upon laser excitation compared to its zero-field response. This enhances the laser-induced contraction of the transducer and changes the shape of the picosecond strain pulses driven in Dy and detected within the buried Nb layer. Based on our experiment with rare-earth metals we discuss required properties for functional transducers, which may allow for novel field-control of the emitted picosecond strain pulses.

2.
J Phys Condens Matter ; 32(23): 235803, 2020 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-32053804

RESUMO

The strongly magnetostrictive TbFe2 compound has been epitaxially grown on Z-cut Lithium Niobate (LiNbO3) substrates after the deposition of various buffer layers (Mo, Ti and Ti/Mo). Detailed and combined RHEED and x-ray analysis permitted to unravel the in-plane and relative orientation relationships (OR) of the different materials in the system. Despite the use of different templates with different structural orders, similar final OR are eventually found between the piezoelectric substrate and the magnetic layer. The structural and magnetic properties are analyzed in order to get a TbFe2 layer of optimum quality to build a magnetostrictive/piezoelectric hybrid system with efficient strain mediated coupling. Such systems are of interest for the development of magnetic sensors as well as for the electric control of magnetization.

3.
J Phys Condens Matter ; 31(40): 405801, 2019 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-31174194

RESUMO

The TbFe2 compound has been deposited by molecular beam epitaxy on lithium niobate (LN) substrates with different orientations (LN Z-, 128 Y- and 41 Y-cuts). Despite the challenging growth on these unconventional substrates, crystalline TbFe2 films (as a single orientated domain or with a limited number of orientations) of reasonable structural quality could be obtained after the deposition of a Mo buffer layer. Detailed and combined RHEED and x-ray analysis permitted to unravel the complex Mo and TbFe2 crystal orientations and to reveal common 3D orientation relationships between the different lattices, whatever the initial LN cut. The magnetic properties and especially the magnetic anisotropy have been investigated in taking magnetocrystalline, magnetoelastic and magnetostatic contributions into account. These promising results on the epitaxial growth of hybrid piezoelectric/magnetostrictive crystalline system constitute an important step towards the control of magnetization via electrically generated static and/or dynamic strains, and towards the development of magnetic sensors based on surface acoustic wave devices.

4.
Adv Mater ; 28(46): 10204-10210, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27709711

RESUMO

Organic multiferroic tunnel junctions based on La0.6 Sr0.4 MnO3 /poly(vinylidene fluoride) (PVDF)/Co structures are fabricated. The tunneling magneto-resistance sign can be changed by electrically switching the ferroelectric polarization of PVDF barrier. It is demonstrated that the spin-polarization of the PVDF/Co spinterface can be actively controlled by tuning the ferroelectric polarization of PVDF. This study opens new functionality in controlling the injection of spin polarization into organic materials via the ferroelectric polarization of the barrier.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA