Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Magn Reson Imaging ; 59(1): 311-322, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37335079

RESUMO

BACKGROUND: The choice between different diffusion-weighted imaging (DWI) techniques is difficult as each comes with tradeoffs for efficient clinical routine imaging and apparent diffusion coefficient (ADC) accuracy. PURPOSE: To quantify signal-to-noise-ratio (SNR) efficiency, ADC accuracy, artifacts, and distortions for different DWI acquisition techniques, coils, and scanners. STUDY TYPE: Phantom, in vivo intraindividual biomarker accuracy between DWI techniques and independent ratings. POPULATION/PHANTOMS: NIST diffusion phantom. 51 Patients: 40 with prostate cancer and 11 with head-and-neck cancer at 1.5 T FIELD STRENGTH/SEQUENCE: Echo planar imaging (EPI): 1.5 T and 3 T Siemens; 3 T Philips. Distortion-reducing: RESOLVE (1.5 and 3 T Siemens); Turbo Spin Echo (TSE)-SPLICE (3 T Philips). Small field-of-view (FOV): ZoomitPro (1.5 T Siemens); IRIS (3 T Philips). Head-and-neck and flexible coils. ASSESSMENT: SNR Efficiency, geometrical distortions, and susceptibility artifacts were quantified for different b-values in a phantom. ADC accuracy/agreement was quantified in phantom and for 51 patients. In vivo image quality was independently rated by four experts. STATISTICAL TESTS: QIBA methodology for accuracy: trueness, repeatability, reproducibility, Bland-Altman 95% Limits-of-Agreement (LOA) for ADC. Wilcoxon Signed-Rank and student tests on P < 0.05 level. RESULTS: The ZoomitPro small FOV sequence improved b-image efficiency by 8%-14%, reduced artifacts and observer scoring for most raters at the cost of smaller FOV compared to EPI. The TSE-SPLICE technique reduced artifacts almost completely at a 24% efficiency cost compared to EPI for b-values ≤500 sec/mm2 . Phantom ADC 95% LOA trueness were within ±0.03 × 10-3 mm2 /sec except for small FOV IRIS. The in vivo ADC agreement between techniques, however, resulted in 95% LOAs in the order of ±0.3 × 10-3 mm2 /sec with up to 0.2 × 10-3 mm2 /sec of bias. DATA CONCLUSION: ZoomitPro for Siemens and TSE SPLICE for Philips resulted in a trade-off between efficiency and artifacts. Phantom ADC quality control largely underestimated in vivo accuracy: significant ADC bias and variability was found between techniques in vivo. LEVEL OF EVIDENCE: 3 TECHNICAL EFFICACY STAGE: 2.


Assuntos
Cabeça , Pescoço , Masculino , Humanos , Reprodutibilidade dos Testes , Imagens de Fantasmas , Imagem de Difusão por Ressonância Magnética/métodos , Imagem Ecoplanar/métodos
2.
J Proteome Res ; 22(3): 996-1002, 2023 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-36748112

RESUMO

The simple light isotope metabolic-labeling technique relies on the in vivo biosynthesis of amino acids from U-[12C]-labeled molecules provided as the sole carbon source. The incorporation of the resulting U-[12C]-amino acids into proteins presents several key advantages for mass-spectrometry-based proteomics analysis, as it results in more intense monoisotopic ions, with a better signal-to-noise ratio in bottom-up analysis. In our initial studies, we developed the simple light isotope metabolic (SLIM)-labeling strategy using prototrophic eukaryotic microorganisms, the yeasts Candida albicans and Saccharomyces cerevisiae, as well as strains with genetic markers that lead to amino-acid auxotrophy. To extend the range of SLIM-labeling applications, we evaluated (i) the incorporation of U-[12C]-glucose into proteins of human cells grown in a complex RPMI-based medium containing the labeled molecule, considering that human cell lines require a large number of essential amino-acids to support their growth, and (ii) an indirect labeling strategy in which the nematode Caenorhabditis elegans grown on plates was fed U-[12C]-labeled bacteria (Escherichia coli) and the worm proteome analyzed for 12C incorporation into proteins. In both cases, we were able to demonstrate efficient incorporation of 12C into the newly synthesized proteins, opening the way for original approaches in quantitative proteomics.


Assuntos
Caenorhabditis elegans , Proteoma , Animais , Humanos , Caenorhabditis elegans/genética , Proteoma/análise , Escherichia coli/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Aminoácidos/metabolismo , Linhagem Celular , Isótopos , Marcação por Isótopo/métodos
3.
Haematologica ; 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38058210

RESUMO

Recombinant factor VIII (rFVIII), rFVIIIFc and emicizumab are established treatment options in the management of hemophilia A. Each has its unique mode of action, which can influence thrombin generation kinetics and therefore also the kinetics of thrombin substrates. Such differences may potentially result in clots with different structural and physical properties. A starting observation of incomplete wound closure in a patient on emicizumab-prophylaxis led us employ a relevant mouse model in which we noticed that emicizumab-induced clots appeared less stable compared to FVIII-induced clots. We thus analyzed fibrin formation in vitro and in vivo. In vitro fibrin formation was faster and more abundant in the presence of emicizumab compared to rFVIII/rFVIIIFc. Furthermore, the time-interval between the initiation of fibrin formation and factor XIII activation was twice as long for emicizumab compared to rFVIII/rFVIIIFc. Scanning-electron microscopy and immunofluorescent spinning-disk confocal-microscopy of in vivo generated clots confirmed increased fibrin formation in the presence of emicizumab. Unexpectedly, we also detected a different morphology between rFVIII/rFVIIIFc- and emicizumab-induced clots. Contrary to the regular fibrin-mesh obtained with rFVIII/rFVIIIFc, fibrin-fibers appeared to be fused into large patches upon emicizumabtreatment. Moreover, fewer red blood cells were detected in regions where these fibrin patches were present. The presence of highly-dense fibrin-structures associated with a diffuse fiber-structure in emicizumab-induced clots was also observed when using superresolution imaging. We hypothesize that the modified kinetics of thrombin, fibrin and factor XIIIa generation contribute to differences in structural and physical properties between clots formed in the presence of FVIII or emicizumab.

4.
Neuroimage ; 241: 118430, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34314848

RESUMO

PURPOSE: Heating of gradient coils and passive shim components is a common cause of instability in the B0 field, especially when gradient intensive sequences are used. The aim of the study was to set a benchmark for typical drift encountered during MR spectroscopy (MRS) to assess the need for real-time field-frequency locking on MRI scanners by comparing field drift data from a large number of sites. METHOD: A standardized protocol was developed for 80 participating sites using 99 3T MR scanners from 3 major vendors. Phantom water signals were acquired before and after an EPI sequence. The protocol consisted of: minimal preparatory imaging; a short pre-fMRI PRESS; a ten-minute fMRI acquisition; and a long post-fMRI PRESS acquisition. Both pre- and post-fMRI PRESS were non-water suppressed. Real-time frequency stabilization/adjustment was switched off when appropriate. Sixty scanners repeated the protocol for a second dataset. In addition, a three-hour post-fMRI MRS acquisition was performed at one site to observe change of gradient temperature and drift rate. Spectral analysis was performed using MATLAB. Frequency drift in pre-fMRI PRESS data were compared with the first 5:20 minutes and the full 30:00 minutes of data after fMRI. Median (interquartile range) drifts were measured and showed in violin plot. Paired t-tests were performed to compare frequency drift pre- and post-fMRI. A simulated in vivo spectrum was generated using FID-A to visualize the effect of the observed frequency drifts. The simulated spectrum was convolved with the frequency trace for the most extreme cases. Impacts of frequency drifts on NAA and GABA were also simulated as a function of linear drift. Data from the repeated protocol were compared with the corresponding first dataset using Pearson's and intraclass correlation coefficients (ICC). RESULTS: Of the data collected from 99 scanners, 4 were excluded due to various reasons. Thus, data from 95 scanners were ultimately analyzed. For the first 5:20 min (64 transients), median (interquartile range) drift was 0.44 (1.29) Hz before fMRI and 0.83 (1.29) Hz after. This increased to 3.15 (4.02) Hz for the full 30 min (360 transients) run. Average drift rates were 0.29 Hz/min before fMRI and 0.43 Hz/min after. Paired t-tests indicated that drift increased after fMRI, as expected (p < 0.05). Simulated spectra convolved with the frequency drift showed that the intensity of the NAA singlet was reduced by up to 26%, 44 % and 18% for GE, Philips and Siemens scanners after fMRI, respectively. ICCs indicated good agreement between datasets acquired on separate days. The single site long acquisition showed drift rate was reduced to 0.03 Hz/min approximately three hours after fMRI. DISCUSSION: This study analyzed frequency drift data from 95 3T MRI scanners. Median levels of drift were relatively low (5-min average under 1 Hz), but the most extreme cases suffered from higher levels of drift. The extent of drift varied across scanners which both linear and nonlinear drifts were observed.


Assuntos
Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Análise de Dados , Bases de Dados Factuais/normas , Imageamento por Ressonância Magnética/normas , Espectroscopia de Ressonância Magnética/normas , Humanos , Imageamento por Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética/métodos
5.
Nat Methods ; 15(11): 921-923, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30377360

RESUMO

FLIRT (fast local infrared thermogenetics) is a microscopy-based technology to locally and reversibly manipulate protein function while simultaneously monitoring the effects in vivo. FLIRT locally inactivates fast-acting temperature-sensitive mutant proteins. We demonstrate that FLIRT can control temperature-sensitive proteins required for cell division, Delta-Notch cell fate signaling, and germline structure in Caenorhabditis elegans with cell-specific and even subcellular precision.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/fisiologia , Técnicas Genéticas/instrumentação , Raios Infravermelhos , Imagem Molecular/métodos , Mutação , Temperatura , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/efeitos da radiação , Proteínas de Caenorhabditis elegans/genética , Diferenciação Celular , Embrião não Mamífero/citologia , Embrião não Mamífero/fisiologia , Regulação da Expressão Gênica , Células Germinativas , Microscopia , Receptores Notch , Transdução de Sinais
6.
Am J Hum Genet ; 101(6): 1006-1012, 2017 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-29198720

RESUMO

Leber congenital amaurosis (LCA) is a neurodegenerative disease of photoreceptor cells that causes blindness within the first year of life. It occasionally occurs in syndromic metabolic diseases and plurisystemic ciliopathies. Using exome sequencing in a multiplex family and three simplex case subjects with an atypical association of LCA with early-onset hearing loss, we identified two heterozygous mutations affecting Arg391 in ß-tubulin 4B isotype-encoding (TUBB4B). Inspection of the atomic structure of the microtubule (MT) protofilament reveals that the ß-tubulin Arg391 residue contributes to a binding pocket that interacts with α-tubulin contained in the longitudinally adjacent αß-heterodimer, consistent with a role in maintaining MT stability. Functional analysis in cultured cells overexpressing FLAG-tagged wild-type or mutant TUBB4B as well as in primary skin-derived fibroblasts showed that the mutant TUBB4B is able to fold, form αß-heterodimers, and co-assemble into the endogenous MT lattice. However, the dynamics of growing MTs were consistently altered, showing that the mutations have a significant dampening impact on normal MT growth. Our findings provide a link between sensorineural disease and anomalies in MT behavior and describe a syndromic LCA unrelated to ciliary dysfunction.


Assuntos
Amaurose Congênita de Leber/genética , Microtúbulos/genética , Tubulina (Proteína)/genética , Adulto , Sítios de Ligação/genética , Células Cultivadas , Criança , Análise Mutacional de DNA , Feminino , Humanos , Masculino , Microtúbulos/metabolismo , Pessoa de Meia-Idade , Mutação de Sentido Incorreto/genética , Células Fotorreceptoras/metabolismo , Tubulina (Proteína)/metabolismo , Sequenciamento do Exoma
7.
Development ; 144(9): 1674-1686, 2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28289130

RESUMO

In most species, oocytes lack centrosomes. Accurate meiotic spindle assembly and chromosome segregation - essential to prevent miscarriage or developmental defects - thus occur through atypical mechanisms that are not well characterized. Using quantitative in vitro and in vivo functional assays in the C. elegans oocyte, we provide novel evidence that the kinesin-13 KLP-7 promotes destabilization of the whole cellular microtubule network. By counteracting ectopic microtubule assembly and disorganization of the microtubule network, this function is strictly required for spindle organization, chromosome segregation and cytokinesis in meiotic cells. Strikingly, when centrosome activity was experimentally reduced, the absence of KLP-7 or the mammalian kinesin-13 protein MCAK (KIF2C) also resulted in ectopic microtubule asters during mitosis in C. elegans zygotes or HeLa cells, respectively. Our results highlight the general function of kinesin-13 microtubule depolymerases in preventing ectopic, spontaneous microtubule assembly when centrosome activity is defective or absent, which would otherwise lead to spindle microtubule disorganization and aneuploidy.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Segregação de Cromossomos , Citocinese , Cinesinas/metabolismo , Microtúbulos/metabolismo , Oócitos/citologia , Oócitos/metabolismo , Células HeLa , Humanos , Imageamento Tridimensional , Meiose , Fuso Acromático/metabolismo
8.
EMBO Rep ; 19(5)2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29632243

RESUMO

Cenp-F is a multifaceted protein implicated in cancer and developmental pathologies. The Cenp-F C-terminal region contains overlapping binding sites for numerous proteins that contribute to its functions throughout the cell cycle. Here, we focus on the nuclear pore protein Nup133 that interacts with Cenp-F both at nuclear pores in prophase and at kinetochores in mitosis, and on the kinase Bub1, known to contribute to Cenp-F targeting to kinetochores. By combining in silico structural modeling and yeast two-hybrid assays, we generate an interaction model between a conserved helix within the Nup133 ß-propeller and a short leucine zipper-containing dimeric segment of Cenp-F. We thereby create mutants affecting the Nup133/Cenp-F interface and show that they prevent Cenp-F localization to the nuclear envelope, but not to kinetochores. Conversely, a point mutation within an adjacent leucine zipper affecting the kinetochore targeting of Cenp-F KT-core domain impairs its interaction with Bub1, but not with Nup133, identifying Bub1 as the direct KT-core binding partner of Cenp-F. Finally, we show that Cenp-E redundantly contributes together with Bub1 to the recruitment of Cenp-F to kinetochores.


Assuntos
Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Cinetocoros/metabolismo , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/metabolismo , Antígenos de Histocompatibilidade Menor/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Poro Nuclear/metabolismo , Proteínas de Ciclo Celular/metabolismo , Células HeLa , Humanos , Antígenos de Histocompatibilidade Menor/genética , Mitose , Membrana Nuclear/metabolismo , Poro Nuclear/genética , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Ligação Proteica , Proteínas Serina-Treonina Quinases/genética
9.
Brain Topogr ; 33(4): 533-544, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32303949

RESUMO

The optic radiations (OR) are white matter tracts forming the posterior part of the visual ways. As an important inter-individual variability exists, atlases may be inefficient to locate the OR in a given subject. We designed a fully automatic method to delimitate the OR on a magnetic resonance imaging using tractography. On 15 healthy subjects, we evaluated the validity of our method by comparing the outputs to the Jülich post-mortem histological atlas, and its reproducibility. We also evaluated its feasibility on 98 multiple sclerosis (MS) patients. We correlated different visual outcomes with the inflammatory lesions volume within the OR reconstructed with different methods (our method, atlas, TractSeg). Our method reconstructed the OR bundle in all healthy subjects (< 2 h for most of them), and was reproducible. It demonstrated good classification indexes: sensitivity up to 0.996, specificity up to 0.993, Dice coefficient up to 0.842, and an area under the receiver operating characteristic (ROC) curve of 0.981. Our method reconstructed the OR in 91 of the 98 MS patients (92.9%, < 6 h for most of patients). Compared to an atlas-based approach and the TractSeg method, the inflammatory lesions volume in the OR measured with our method better correlated with the visual cortex volume, visual acuity and mean peripapillar retinal nerve fiber layer thickness. Our method seems to be efficient to reconstruct the OR in healthy subjects, and seems applicable to MS patients. It may be more relevant than an atlas based approach.


Assuntos
Esclerose Múltipla , Vias Visuais , Automação , Humanos , Esclerose Múltipla/diagnóstico por imagem , Fibras Nervosas , Reprodutibilidade dos Testes , Vias Visuais/diagnóstico por imagem
10.
Development ; 143(19): 3604-3614, 2016 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-27578779

RESUMO

In most animals, female meiotic spindles are assembled in the absence of centrosomes. How microtubules (MTs) are organized into acentrosomal meiotic spindles is poorly understood. In Caenorhabditis elegans, assembly of female meiotic spindles requires MEI-1 and MEI-2, which constitute the microtubule-severing AAA+ ATPase Katanin. However, the role of MEI-2 is not known and whether MT severing is required for meiotic spindle assembly is unclear. Here, we show that the essential role of MEI-2 is to confer MT binding to Katanin, which in turn stimulates the ATPase activity of MEI-1, leading to MT severing. To test directly the contribution of MT severing to meiotic spindle assembly, we engineered Katanin variants that retained MT binding and MT bundling activities but that were inactive for MT severing. In vivo analysis of these variants showed disorganized microtubules that lacked focused spindle poles reminiscent of the Katanin loss-of-function phenotype, demonstrating that the MT-severing activity is essential for meiotic spindle assembly in C. elegans Overall, our results reveal the essential role of MEI-2 and provide the first direct evidence supporting an essential role of MT severing in meiotic spindle assembly in C. elegans.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Microtúbulos/metabolismo , Fuso Acromático/metabolismo , Adenosina Trifosfatases/genética , Animais , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Feminino , Katanina , Meiose/genética , Meiose/fisiologia , Microtúbulos/genética , Fuso Acromático/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA