Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mol Cancer Res ; 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39348093

RESUMO

Resistance to androgen receptor (AR)-targeted therapies represent a major challenge in prostate cancer (PC). A key mechanism of treatment resistance in patients who progress to castrate-resistant PC (CRPC) is the generation of alternatively spliced androgen receptor variants (AR-Vs). Unlike full-length AR (FL-AR) isoforms, AR-Vs are constitutively active and refractory to current receptor-targeting agents hence drive tumour progression. Identifying regulators of AR-V synthesis may therefore provide new therapeutic opportunities in combination with conventional AR-targeting agents. Our understanding of AR transcript splicing, and the factors that control the synthesis of AR-Vs, remains limited. While candidate-based approaches have identified a small number of AR-V splicing regulators, an unbiased analysis of splicing factors important for AR-V generation is required to fill an important knowledge gap and furnish the field with novel and tractable targets for PC treatment. To that end, we conducted a bespoke CRISPR screen to profile splicing factor requirements for AR-V synthesis. MFAP1 and CWC22 were shown to be required for the generation of AR-V mRNA transcripts and their depletion resulted in reduced AR-V protein abundance and cell proliferation in several CRPC models. Global transcriptomic analysis of MFAP1-depleted cells revealed both AR-dependent and -independent transcriptional impact, including genes associated with DDR. As such, MFAP1 downregulation sensitised PC cells to ionising radiation suggesting therapeutically targeting AR-V splicing could provide novel cellular vulnerabilities which can be exploited in CRPC. Implications: We have utilised a CRISPR screening approach to identify key regulators of pathogenic AR splicing in prostate cancer.

2.
J Clin Invest ; 133(22)2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37751307

RESUMO

Aberrant androgen receptor (AR) signaling drives prostate cancer (PC), and it is a key therapeutic target. Although initially effective, the generation of alternatively spliced AR variants (AR-Vs) compromises efficacy of treatments. In contrast to full-length AR (AR-FL), AR-Vs constitutively activate androgenic signaling and are refractory to the current repertoire of AR-targeting therapies, which together drive disease progression. There is an unmet clinical need, therefore, to develop more durable PC therapies that can attenuate AR-V function. Exploiting the requirement of coregulatory proteins for AR-V function has the capacity to furnish tractable routes for attenuating persistent oncogenic AR signaling in advanced PC. DNA-PKcs regulates AR-FL transcriptional activity and is upregulated in both early and advanced PC. We hypothesized that DNA-PKcs is critical for AR-V function. Using a proximity biotinylation approach, we demonstrated that the DNA-PK holoenzyme is part of the AR-V7 interactome and is a key regulator of AR-V-mediated transcription and cell growth in models of advanced PC. Crucially, we provide evidence that DNA-PKcs controls global splicing and, via RBMX, regulates the maturation of AR-V and AR-FL transcripts. Ultimately, our data indicate that targeting DNA-PKcs attenuates AR-V signaling and provide evidence that DNA-PKcs blockade is an effective therapeutic option in advanced AR-V-positive patients with PC.


Assuntos
Neoplasias de Próstata Resistentes à Castração , Receptores Androgênicos , Masculino , Humanos , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo , Neoplasias de Próstata Resistentes à Castração/genética , Domínio Catalítico , Linhagem Celular Tumoral , Androgênios/uso terapêutico , DNA , Regulação Neoplásica da Expressão Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA