Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Biochem J ; 478(11): 2145-2161, 2021 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-34032265

RESUMO

Recent advances in quantitative proteomics show that WD40 proteins play a pivotal role in numerous cellular networks. Yet, they have been fairly unexplored and their physical associations with other proteins are ambiguous. A quantitative understanding of these interactions has wide-ranging significance. WD40 repeat protein 5 (WDR5) interacts with all members of human SET1/MLL methyltransferases, which regulate methylation of the histone 3 lysine 4 (H3K4). Here, using real-time binding measurements in a high-throughput setting, we identified the kinetic fingerprint of transient associations between WDR5 and 14-residue WDR5 interaction (Win) motif peptides of each SET1 protein (SET1Win). Our results reveal that the high-affinity WDR5-SET1Win interactions feature slow association kinetics. This finding is likely due to the requirement of SET1Win to insert into the narrow WDR5 cavity, also named the Win binding site. Furthermore, our explorations indicate fairly slow dissociation kinetics. This conclusion is in accordance with the primary role of WDR5 in maintaining the functional integrity of a large multisubunit complex, which regulates the histone methylation. Because the Win binding site is considered a key therapeutic target, the immediate outcomes of this study could form the basis for accelerated developments in medical biotechnology.


Assuntos
Histona-Lisina N-Metiltransferase/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Fragmentos de Peptídeos/metabolismo , Domínios e Motivos de Interação entre Proteínas , Motivos de Aminoácidos , Sítios de Ligação , Histona-Lisina N-Metiltransferase/química , Histona-Lisina N-Metiltransferase/genética , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/química , Peptídeos e Proteínas de Sinalização Intracelular/genética , Cinética , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Ligação Proteica , Conformação Proteica
2.
Chembiochem ; 21(6): 825-835, 2020 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-31553819

RESUMO

Antibiotics are known to promote bacterial formation of enhanced biofilms, the mechanism of which is not well understood. Here, using biolayer interferometry, we have shown that bacterial cultures containing antibiotics that target cell walls cause biomass deposition on surfaces over time with a linear profile rather than the Langmuir-like profiles exhibited by bacterial adherence in the absence of antibiotics. We observed about three times the initial rate and 12 times the final biomass deposition on surfaces for cultures containing carbenicillin than without. Unexpectedly, in the presence of antibiotics, the rate of biomass deposition inversely correlated with bacterial densities from different stages of a culture. Detailed studies revealed that carbenicillin caused faster growth of filaments that were seeded on surfaces from young bacteria (from lag phase) than those from high-density fast-growing bacteria, with rates of filament elongation of about 0.58 and 0.13 µm min-1 , respectively. With surfaces that do not support bacterial adherence, few filaments were observed even in solution. These filaments aggregated in solution and formed increased amounts of biofilms on surfaces. These results reveal the lifestyle of antibiotic-induced filamentous bacteria, as well as one way in which the antibiotics promote biofilm formation.


Assuntos
Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Carbenicilina/farmacologia , Parede Celular/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Pseudomonas aeruginosa/efeitos dos fármacos , Aderência Bacteriana/efeitos dos fármacos , Escherichia coli/citologia , Testes de Sensibilidade Microbiana , Pseudomonas aeruginosa/citologia , Propriedades de Superfície
3.
Biochim Biophys Acta Bioenerg ; 1859(9): 775-788, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29932911

RESUMO

F-type ATP synthases are extraordinary multisubunit proteins that operate as nanomotors. The Escherichia coli (E. coli) enzyme uses the proton motive force (pmf) across the bacterial plasma membrane to drive rotation of the central rotor subunits within a stator subunit complex. Through this mechanical rotation, the rotor coordinates three nucleotide binding sites that sequentially catalyze the synthesis of ATP. Moreover, the enzyme can hydrolyze ATP to turn the rotor in the opposite direction and generate pmf. The direction of net catalysis, i.e. synthesis or hydrolysis of ATP, depends on the cell's bioenergetic conditions. Different control mechanisms have been found for ATP synthases in mitochondria, chloroplasts and bacteria. This review discusses the auto-inhibitory behavior of subunit ε found in FOF1-ATP synthases of many bacteria. We focus on E. coli FOF1-ATP synthase, with insights into the regulatory mechanism of subunit ε arising from structural and biochemical studies complemented by single-molecule microscopy experiments.


Assuntos
Trifosfato de Adenosina/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimologia , ATPases Translocadoras de Prótons/metabolismo , Metabolismo Energético , Subunidades Proteicas/metabolismo
5.
J Biol Chem ; 290(34): 21032-21041, 2015 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-26160173

RESUMO

F-type ATP synthases are rotary nanomotor enzymes involved in cellular energy metabolism in eukaryotes and eubacteria. The ATP synthase from Gram-positive and -negative model bacteria can be autoinhibited by the C-terminal domain of its ϵ subunit (ϵCTD), but the importance of ϵ inhibition in vivo is unclear. Functional rotation is thought to be blocked by insertion of the latter half of the ϵCTD into the central cavity of the catalytic complex (F1). In the inhibited state of the Escherichia coli enzyme, the final segment of ϵCTD is deeply buried but has few specific interactions with other subunits. This region of the ϵCTD is variable or absent in other bacteria that exhibit strong ϵ-inhibition in vitro. Here, genetically deleting the last five residues of the ϵCTD (ϵΔ5) caused a greater defect in respiratory growth than did the complete absence of the ϵCTD. Isolated membranes with ϵΔ5 generated proton-motive force by respiration as effectively as with wild-type ϵ but showed a nearly 3-fold decrease in ATP synthesis rate. In contrast, the ϵΔ5 truncation did not change the intrinsic rate of ATP hydrolysis with membranes. Further, the ϵΔ5 subunit retained high affinity for isolated F1 but reduced the maximal inhibition of F1-ATPase by ϵ from >90% to ∼20%. The results suggest that the ϵCTD has distinct regulatory interactions with F1 when rotary catalysis operates in opposite directions for the hydrolysis or synthesis of ATP.


Assuntos
Trifosfato de Adenosina/metabolismo , Sequência de Bases , Proteínas de Escherichia coli/química , Escherichia coli/genética , Proteínas/química , Prótons , Deleção de Sequência , Trifosfato de Adenosina/química , Biocatálise , Membrana Celular/química , Membrana Celular/metabolismo , Escherichia coli/enzimologia , Escherichia coli/crescimento & desenvolvimento , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Expressão Gênica , Hidrólise , Cinética , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Terciária de Proteína , Proteínas/genética , Proteínas/metabolismo , Força Próton-Motriz , Termodinâmica , Proteína Inibidora de ATPase
6.
J Biol Chem ; 288(13): 9383-95, 2013 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-23400782

RESUMO

F1-ATPase is the catalytic complex of rotary nanomotor ATP synthases. Bacterial ATP synthases can be autoinhibited by the C-terminal domain of subunit ε, which partially inserts into the enzyme's central rotor cavity to block functional subunit rotation. Using a kinetic, optical assay of F1·Îµ binding and dissociation, we show that formation of the extended, inhibitory conformation of ε (εX) initiates after ATP hydrolysis at the catalytic dwell step. Prehydrolysis conditions prevent formation of the εX state, and post-hydrolysis conditions stabilize it. We also show that ε inhibition and ADP inhibition are distinct, competing processes that can follow the catalytic dwell. We show that the N-terminal domain of ε is responsible for initial binding to F1 and provides most of the binding energy. Without the C-terminal domain, partial inhibition by the ε N-terminal domain is due to enhanced ADP inhibition. The rapid effects of catalytic site ligands on conformational changes of F1-bound ε suggest dynamic conformational and rotational mobility in F1 that is paused near the catalytic dwell position.


Assuntos
Difosfato de Adenosina/química , Trifosfato de Adenosina/química , Escherichia coli/metabolismo , ATPases Translocadoras de Prótons/química , Antibacterianos/farmacologia , Transporte Biológico , Reagentes de Ligações Cruzadas/farmacologia , Relação Dose-Resposta a Droga , Desenho de Fármacos , Hidrólise , Cinética , Ligantes , Modelos Moleculares , Conformação Molecular , Plasmídeos/metabolismo , Conformação Proteica , Estrutura Terciária de Proteína , ATPases Translocadoras de Prótons/metabolismo , Fatores de Tempo
7.
Biochem Soc Trans ; 41(5): 1219-26, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24059511

RESUMO

Subunit rotation is the mechanochemical intermediate for the catalytic activity of the membrane enzyme FoF1-ATP synthase. smFRET (single-molecule FRET) studies have provided insights into the step sizes of the F1 and Fo motors, internal transient elastic energy storage and controls of the motors. To develop and interpret smFRET experiments, atomic structural information is required. The recent F1 structure of the Escherichia coli enzyme with the ϵ-subunit in an inhibitory conformation initiated a study for real-time monitoring of the conformational changes of ϵ. The present mini-review summarizes smFRET rotation experiments and previews new smFRET data on the conformational changes of the CTD (C-terminal domain) of ϵ in the E. coli enzyme.


Assuntos
Escherichia coli/enzimologia , ATPases Mitocondriais Próton-Translocadoras/química , Conformação Proteica , Escherichia coli/química , Transferência Ressonante de Energia de Fluorescência , Estrutura Terciária de Proteína , Subunidades Proteicas/química
8.
Acta Crystallogr Sect F Struct Biol Cryst Commun ; 68(Pt 10): 1229-33, 2012 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-23027754

RESUMO

The bacterial ATP synthase (F(O)F(1)) of Escherichia coli has been the prominent model system for genetics, biochemical and more recently single-molecule studies on F-type ATP synthases. With 22 total polypeptide chains (total mass of ∼529 kDa), E. coli F(O)F(1) represents nature's smallest rotary motor, composed of a membrane-embedded proton transporter (F(O)) and a peripheral catalytic complex (F(1)). The ATPase activity of isolated F(1) is fully expressed by the α(3)ß(3)γ 'core', whereas single δ and ε subunits are required for structural and functional coupling of E. coli F(1) to F(O). In contrast to mitochondrial F(1)-ATPases that have been determined to atomic resolution, the bacterial homologues have proven very difficult to crystallize. In this paper, we describe a biochemical strategy that led us to improve the crystallogenesis of the E. coli F(1)-ATPase catalytic core. Destabilizing the compact conformation of ε's C-terminal domain with a phosphomimetic mutation (εS65D) dramatically increased crystallization success and reproducibility, yielding crystals of E. coli F(1) that diffract to ∼3.15 Šresolution.


Assuntos
Adenosina Trifosfatases/química , Escherichia coli/enzimologia , Mutação , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Biocatálise , Cristalização , Escherichia coli/genética , Modelos Moleculares , Estrutura Terciária de Proteína , Subunidades Proteicas/química , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo
9.
ACS Chem Biol ; 17(6): 1586-1597, 2022 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-35613319

RESUMO

Progress in tumor sequencing and cancer databases has created an enormous amount of information that scientists struggle to sift through. While several research groups have created computational methods to analyze these databases, much work still remains in distinguishing key implications of pathogenic mutations. Here, we describe an approach to identify and evaluate somatic cancer mutations of WD40 repeat protein 5 (WDR5), a chromatin-associated protein hub. This multitasking protein maintains the functional integrity of large multi-subunit enzymatic complexes of the six human SET1 methyltransferases. Remarkably, the somatic cancer mutations of WDR5 preferentially distribute within and around an essential cavity, which hosts the WDR5 interaction (Win) binding site. Hence, we assessed the real-time binding kinetics of the interactions of key clustered WDR5 mutants with the Win motif peptide ligands of the SET1 family members (SET1Win). Our measurements highlight that this subset of mutants exhibits divergent perturbations in the kinetics and strength of interactions not only relative to those of the native WDR5 but also among various SET1Win ligands. These outcomes could form a fundamental basis for future drug discovery and other developments in medical biotechnology.


Assuntos
Histona-Lisina N-Metiltransferase , Peptídeos , Sítios de Ligação , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Ligantes , Complexos Multienzimáticos/metabolismo , Peptídeos/química , Ligação Proteica
10.
Sci Rep ; 11(1): 13631, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34211053

RESUMO

Bacterial energy metabolism is now recognized as a critical factor for the efficacy of antibiotics. The F-type ATPase/ATP synthase (FOF1) is a central player in cellular bioenergetics of bacteria and eukaryotes, and its potential as a selective antibiotic target has been confirmed by the success of bedaquiline in combatting multidrug-resistant tuberculosis. Venturicidin macrolides were initially identified for their antifungal properties and were found to specifically inhibit FOF1 of eukaryotes and bacteria. Venturicidins alone are not effective antibacterials but recently were found to have adjuvant activity, potentiating the efficacy of aminoglycoside antibiotics against several species of resistant bacteria. Here we discovered more complex effects of venturicidins on the ATPase activity of FOF1 in bacterial membranes from Escherichia coli and Pseudomonas aeruginosa. Our major finding is that higher concentrations of venturicidin induce time- and ATP-dependent decoupling of F1-ATPase activity from the venturicidin-inhibited, proton-transporting FO complex. This dysregulated ATPase activity is likely to be a key factor in the depletion of cellular ATP induced by venturicidins in prior studies with P. aeruginosa and Staphylococcus aureus. Further studies of how this functional decoupling occurs could guide development of new antibiotics and/or adjuvants that target the F-type ATPase/ATP synthase.


Assuntos
Antibacterianos/farmacologia , Proteínas de Bactérias/metabolismo , Escherichia coli/efeitos dos fármacos , ATPases Translocadoras de Prótons/metabolismo , Pseudomonas aeruginosa/efeitos dos fármacos , Venturicidinas/farmacologia , Trifosfato de Adenosina/metabolismo , Antibacterianos/química , Escherichia coli/metabolismo , Infecções por Escherichia coli/tratamento farmacológico , Infecções por Escherichia coli/microbiologia , Humanos , Macrolídeos/química , Macrolídeos/farmacologia , Modelos Moleculares , Infecções por Pseudomonas/tratamento farmacológico , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/metabolismo , Venturicidinas/química
11.
Biochim Biophys Acta Bioenerg ; 1861(7): 148189, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32194063

RESUMO

ATP synthases are important energy-coupling, rotary motor enzymes in all kingdoms of life. In all F-type ATP synthases, the central rotor of the catalytic F1 complex is composed of the γ subunit and the N-terminal domain (NTD) of the ε subunit. In the enzymes of diverse bacteria, the C-terminal domain of ε (εCTD) can undergo a dramatic conformational change to trap the enzyme in a transiently inactive state. This inhibitory mechanism is absent in the mitochondrial enzyme, so the εCTD could provide a means to selectively target ATP synthases of pathogenic bacteria for antibiotic development. For Escherichia coli and other bacterial model systems, it has been difficult to dissect the relationship between ε inhibition and a MgADP-inhibited state that is ubiquitous for FOF1 from bacteria and eukaryotes. A prior study with the isolated catalytic complex from E. coli, EcF1, showed that these two modes of inhibition are mutually exclusive, but it has long been known that interactions of F1 with the membrane-embedded FO complex modulate inhibition by the εCTD. Here, we study membranes containing EcFOF1 with wild-type ε, ε lacking the full εCTD, or ε with a small deletion at the C-terminus. By using compounds with distinct activating effects on F-ATP-ase activity, we confirm that εCTD inhibition and ubiquitous MgADP inhibition are mutually exclusive for membrane-bound E. coli F-ATP-ase. We determine that most of the enzyme complexes in wild-type membranes are in the ε-inhibited state (>50%) or in the MgADP-inhibited state (30%).


Assuntos
Difosfato de Adenosina/farmacologia , Membrana Celular/enzimologia , Escherichia coli/enzimologia , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , ATPases Translocadoras de Prótons/antagonistas & inibidores , ATPases Translocadoras de Prótons/metabolismo , Trifosfato de Adenosina/metabolismo , Dimetilaminas/farmacologia , Ativação Enzimática/efeitos dos fármacos , Hidrólise , Domínios Proteicos , Ácido Selenioso/farmacologia , Solubilidade
12.
Biomaterials ; 215: 119233, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31176068

RESUMO

The development of a facile protein delivery vehicle is challenging and remains an unmet demand for clinical applications. The well-defined structure and functionality of a nanocarrier are highly desirable for the reproducibility and regulatory compliance. Herein, we report for the first time a novel Janus dendrimer (JD) system, comprised of two distinct dendrons with superior protein binding and protein repelling properties, respectively, for efficient spontaneous protein loading and enhanced in vivo protein delivery. Core-forming dendron is tethered with a combination of charged and hydrophobic moieties, which coat protein surface efficiently via the multivalent and synergistic interactions. Zwitterionic peripheries on the counter dendron endow the nanoparticle (<20 nm) with a highly hydrophilic and antifouling surface, which efficiently prevents serum protein adsorption and exchange as demonstrated in biolayer interferometry assay, therefore, reducing premature protein release. Surprisingly, JD nanocarriers containing biomimicking glycerylphosphorylcholine (GPC) surface significantly enhanced the intracellular uptake of protein therapeutics specifically in cancer cells, compared with zwitterionic carboxybetain (CB)-JD and PEGylated nanocarriers. The zwitterionic JD nanocarriers greatly prolonged the in vivo pharmacokinetic profiles of payloads relative to the PEGylated nanocarriers. Janus nanocarrier controlled the in vivo release of insulin and improved the blood sugar control in mice.


Assuntos
Dendrímeros/química , Nanopartículas/química , Proteínas/química , Animais , Sistemas de Liberação de Medicamentos/métodos , Humanos , Interações Hidrofóbicas e Hidrofílicas , Interferometria
13.
Elife ; 82019 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-30912741

RESUMO

ATP synthase produces the majority of cellular energy in most cells. We have previously reported cryo-EM maps of autoinhibited E. coli ATP synthase imaged without addition of nucleotide (Sobti et al. 2016), indicating that the subunit ε engages the α, ß and γ subunits to lock the enzyme and prevent functional rotation. Here we present multiple cryo-EM reconstructions of the enzyme frozen after the addition of MgATP to identify the changes that occur when this ε inhibition is removed. The maps generated show that, after exposure to MgATP, E. coli ATP synthase adopts a different conformation with a catalytic subunit changing conformation substantially and the ε C-terminal domain transitioning via an intermediate 'half-up' state to a condensed 'down' state. This work provides direct evidence for unique conformational states that occur in E. coli ATP synthase when ATP binding prevents the ε C-terminal domain from entering the inhibitory 'up' state.


Assuntos
Trifosfato de Adenosina/metabolismo , Proteínas de Escherichia coli/ultraestrutura , ATPases Mitocondriais Próton-Translocadoras/ultraestrutura , Microscopia Crioeletrônica , Conformação Proteica , Subunidades Proteicas/química
14.
J Am Chem Soc ; 130(16): 5398-9, 2008 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-18376823

RESUMO

Fluorescent probes are essential for the exploration of protein function, detection of molecular interactions, and conformational changes. The nitrilotriacetic acid derivatives of different chromophores were successfully used for site-selective noncovalent fluorescence labeling of histidine-tagged proteins. All of them, however, suffer from the same drawback--loss of the fluorescence upon binding of the nickel ions. Herein we present the solution and solid phase synthesis of water-soluble perylene(dicarboximide) functionalized with a nitrilotriacetic acid moiety (PDI-NTA). The photophysical properties of PDI-NTA revealed an exceptional photostability and fluorescence quantum yield that remained unchanged upon addition of nickel ions. The F1 complex of F0F1-ATP synthase from Escherichia coli, containing three hexahistidine tags, was labeled and the suitability for site-specific labeling of the new chromophore demonstrated using fluorescence correlation spectroscopy.


Assuntos
Corantes Fluorescentes/síntese química , Ácido Nitrilotriacético/química , Perileno/síntese química , Adenosina Trifosfatases/metabolismo , Sítios de Ligação , Escherichia coli/enzimologia , Transferência Ressonante de Energia de Fluorescência , Níquel/química , Perileno/análogos & derivados , Fótons , Solubilidade , Água/química
16.
ACS Macro Lett ; 6(3): 267-271, 2017 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-35650900

RESUMO

Structure-based nanocarrier design for protein delivery remains challenging and has rarely been documented in the literature. We herein present a facile computer-aided approach for rational and customized design of a unique linear-dendritic telodendrimer that self-assembles into a nanocarrier for therapeutic protein delivery, e.g., insulin. Virtual screening of a small-molecule library was performed to identify optimal protein binding moieties, which were conjugated precisely in the telodendrimer backbone preinstalled with charged moieties. We systematically tested our hypothesis and obtained significant correlations between the computational predictions and experimental results. The d-α-tocopherol (vitamin E)-containing nanocarrier showed strong binding affinity for insulin in both computational prediction and experiments, which led to improved blood glucose control. This study affirms the concept and validates the approach of structure-based nanocarrier design for protein delivery.

17.
J Vis Exp ; (84): e51383, 2014 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-24638157

RESUMO

We describe the use of Bio-layer Interferometry to study inhibitory interactions of subunit ε with the catalytic complex of Escherichia coli ATP synthase. Bacterial F-type ATP synthase is the target of a new, FDA-approved antibiotic to combat drug-resistant tuberculosis. Understanding bacteria-specific auto-inhibition of ATP synthase by the C-terminal domain of subunit ε could provide a new means to target the enzyme for discovery of antibacterial drugs. The C-terminal domain of ε undergoes a dramatic conformational change when the enzyme transitions between the active and inactive states, and catalytic-site ligands can influence which of ε's conformations is predominant. The assay measures kinetics of ε's binding/dissociation with the catalytic complex, and indirectly measures the shift of enzyme-bound ε to and from the apparently nondissociable inhibitory conformation. The Bio-layer Interferometry signal is not overly sensitive to solution composition, so it can also be used to monitor allosteric effects of catalytic-site ligands on ε's conformational changes.


Assuntos
Interferometria/métodos , Proteínas/química , Proteínas/metabolismo , Biotina/química , Proteínas Imobilizadas/química , Proteínas Imobilizadas/metabolismo , Interferometria/instrumentação , Cinética , Ligantes , Estreptavidina/química
18.
Proc SPIE Int Soc Opt Eng ; 8950: 89500H, 2014 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-25309100

RESUMO

F1-ATPase is the soluble portion of the membrane-embedded enzyme FoF1-ATP synthase that catalyzes the production of adenosine triphosphate in eukaryotic and eubacterial cells. In reverse, the F1 part can also hydrolyze ATP quickly at three catalytic binding sites. Therefore, catalysis of 'non-productive' ATP hydrolysis by F1 (or FoF1) must be minimized in the cell. In bacteria, the ε subunit is thought to control and block ATP hydrolysis by mechanically inserting its C-terminus into the rotary motor region of F1. We investigate this proposed mechanism by labeling F1 specifically with two fluorophores to monitor the C-terminus of the ε subunit by Förster resonance energy transfer. Single F1 molecules are trapped in solution by an Anti-Brownian electrokinetic trap which keeps the FRET-labeled F1 in place for extended observation times of several hundreds of milliseconds, limited by photobleaching. FRET changes in single F1 and FRET histograms for different biochemical conditions are compared to evaluate the proposed regulatory mechanism.

19.
G3 (Bethesda) ; 4(3): 523-37, 2014 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-24470217

RESUMO

The Ess1 prolyl isomerase from Saccharomyces cerevisiae and its human ortholog, Pin1, play critical roles in transcription by regulating RNA polymerase II. In human cells, Pin1 also regulates a variety of signaling proteins, and Pin1 misexpression is linked to several human diseases. To gain insight into Ess1/Pin1 function, we carried out a synthetic genetic array screen to identify novel targets of Ess1 in yeast. We identified potential targets of Ess1 in transcription, stress, and cell-cycle pathways. We focused on the cell-cycle regulators Swi6 and Whi5, both of which show highly regulated nucleocytoplasmic shuttling during the cell cycle. Surprisingly, Ess1 did not control their transcription but instead was necessary for their nuclear localization. Ess1 associated with Swi6 and Whi5 in vivo and bound directly to peptides corresponding to their nuclear localization sequences in vitro. Binding by Ess1 was significant only if the Swi6 and Whi5 peptides were phosphorylated at Ser-Pro motifs, the target sites of cyclin-dependent kinases. On the basis of these results, we propose a model in which Ess1 induces a conformational switch (cis-trans isomerization) at phospho-Ser-Pro sites within the nuclear targeting sequences of Swi6 and Whi5. This switch would promote nuclear entry and/or retention during late M and G1 phases and might work by stimulating dephosphorylation at these sites by the Cdc14 phosphatase. This is the first study to identify targets of Ess1 in yeast other than RNA polymerase II.


Assuntos
Núcleo Celular/metabolismo , Peptidilprolil Isomerase/metabolismo , Proteínas Repressoras/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/metabolismo , Sequência de Aminoácidos , Proteínas de Ciclo Celular/metabolismo , Divisão Celular , Fase G1 , Cinética , Modelos Moleculares , Dados de Sequência Molecular , Peptidilprolil Isomerase de Interação com NIMA , Peptidilprolil Isomerase/genética , Fosforilação , Ligação Proteica , Proteínas Tirosina Fosfatases/metabolismo , Proteínas Repressoras/química , Proteínas Repressoras/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Fatores de Transcrição/química , Fatores de Transcrição/genética
20.
Proc SPIE Int Soc Opt Eng ; 8948: 89481J, 2014 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-25076824

RESUMO

Subunit ε is an intrinsic regulator of the bacterial FoF1-ATP synthase, the ubiquitous membrane-embedded enzyme that utilizes a proton motive force in most organisms to synthesize adenosine triphosphate (ATP). The C-terminal domain of ε can extend into the central cavity formed by the α and ß subunits, as revealed by the recent X-ray structure of the F1 portion of the Escherichia coli enzyme. This insertion blocks the rotation of the central γ subunit and, thereby, prevents wasteful ATP hydrolysis. Here we aim to develop an experimental system that can reveal conditions under which ε inhibits the holoenzyme FoF1-ATP synthase in vitro. Labeling the C-terminal domain of ε and the γ subunit specifically with two different fluorophores for single-molecule Förster resonance energy transfer (smFRET) allowed monitoring of the conformation of ε in the reconstituted enzyme in real time. New mutants were made for future three-color smFRET experiments to unravel the details of regulatory conformational changes in ε.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA