Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Eukaryot Cell ; 4(9): 1562-73, 2005 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16151249

RESUMO

The ability to adhere to surfaces and develop as a multicellular community is an adaptation used by most microorganisms to survive in changing environments. Biofilm formation proceeds through distinct developmental phases and impacts not only medicine but also industry and evolution. In organisms such as the opportunistic pathogen Candida albicans, the ability to grow as biofilms is also an important mechanism for persistence, facilitating its growth on different tissues and a broad range of abiotic surfaces used in medical devices. The early stage of C. albicans biofilm is characterized by the adhesion of single cells to the substratum, followed by the formation of an intricate network of hyphae and the beginning of a dense structure. Changes in the transcriptome begin within 30 min of contact with the substrate and include expression of genes related to sulfur metabolism, in particular MET3, and the equivalent gene homologues of the Ribi regulon in Saccharomyces cerevisiae. Some of these changes are initiated early and maintained throughout the process; others are restricted to the earliest stages of biofilm formation. We identify here a potential alternative pathway for cysteine metabolism and the biofilm-associated expression of genes involved in glutathione production in C. albicans.


Assuntos
Antígenos de Fungos/metabolismo , Biofilmes/crescimento & desenvolvimento , Candida albicans/fisiologia , Regulação Fúngica da Expressão Gênica , Genoma , Antígenos de Fungos/genética , Adesão Celular , Perfilação da Expressão Gênica , Hifas/crescimento & desenvolvimento , Análise de Sequência com Séries de Oligonucleotídeos , Plâncton/genética , Plâncton/crescimento & desenvolvimento , Plâncton/metabolismo , RNA Fúngico/genética , RNA Fúngico/metabolismo , RNA Mensageiro/análise , Reação em Cadeia da Polimerase Via Transcriptase Reversa
2.
PLoS Genet ; 1(1): 36-57, 2005 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16103911

RESUMO

Recent sequencing and assembly of the genome for the fungal pathogen Candida albicans used simple automated procedures for the identification of putative genes. We have reviewed the entire assembly, both by hand and with additional bioinformatic resources, to accurately map and describe 6,354 genes and to identify 246 genes whose original database entries contained sequencing errors (or possibly mutations) that affect their reading frame. Comparison with other fungal genomes permitted the identification of numerous fungus-specific genes that might be targeted for antifungal therapy. We also observed that, compared to other fungi, the protein-coding sequences in the C. albicans genome are especially rich in short sequence repeats. Finally, our improved annotation permitted a detailed analysis of several multigene families, and comparative genomic studies showed that C. albicans has a far greater catabolic range, encoding respiratory Complex 1, several novel oxidoreductases and ketone body degrading enzymes, malonyl-CoA and enoyl-CoA carriers, several novel amino acid degrading enzymes, a variety of secreted catabolic lipases and proteases, and numerous transporters to assimilate the resulting nutrients. The results of these efforts will ensure that the Candida research community has uniform and comprehensive genomic information for medical research as well as for future diagnostic and therapeutic applications.

3.
Mol Microbiol ; 53(5): 1451-69, 2004 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-15387822

RESUMO

Iron, an essential element for almost every organism, serves as a regulatory signal for the expression of virulence determinants in many prokaryotic and eukaryotic pathogens. Using a custom Affymetrix GeneChip representing the entire Candida albicans genome, we examined the changes in genome-wide gene expression in this opportunistic pathogen as a function of alterations in environmental concentrations of iron. A total of 526 open reading frame (ORF) transcripts are more highly expressed when the levels of available iron are low, while 626 ORF transcripts are more highly expressed in high-iron conditions. The transcripts dominantly affected by iron concentration range from those associated with cell-surface properties to others which affect mitochondrial function, iron transport and virulence-related secreted hydrolases. Moreover gene expression as assayed in DNA microarrays confirms and extends reports of alterations in cell-surface antigens and drug sensitivity correlated with iron availability. To understand how these genes and pathways might be regulated, we isolated a gene designated SFU1 that encodes a homologue of the Ustilago maydis URBS1, a transcriptional repressor of siderophore uptake/biosynthesis. Comparisons between wild-type and SFU1-null mutant strains revealed 139 potential target genes of Sfu1p; many of which are iron-responsive. Together, these results not only expand our understanding of global iron regulation in C. albicans, but also provide insights into the potential role of iron availability in C. albicans virulence.


Assuntos
Candida albicans/genética , Candida albicans/metabolismo , Perfilação da Expressão Gênica , Regulação Fúngica da Expressão Gênica , Ferro/metabolismo , Sequência de Aminoácidos , Animais , Candida albicans/patogenicidade , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Genoma Fúngico , Dados de Sequência Molecular , Análise de Sequência com Séries de Oligonucleotídeos , Fases de Leitura Aberta , Proteínas Periplásmicas de Ligação/genética , Proteínas Periplásmicas de Ligação/metabolismo , Alinhamento de Sequência
4.
Proc Natl Acad Sci U S A ; 101(19): 7329-34, 2004 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-15123810

RESUMO

We present the diploid genome sequence of the fungal pathogen Candida albicans. Because C. albicans has no known haploid or homozygous form, sequencing was performed as a whole-genome shotgun of the heterozygous diploid genome in strain SC5314, a clinical isolate that is the parent of strains widely used for molecular analysis. We developed computational methods to assemble a diploid genome sequence in good agreement with available physical mapping data. We provide a whole-genome description of heterozygosity in the organism. Comparative genomic analyses provide important clues about the evolution of the species and its mechanisms of pathogenesis.


Assuntos
Candida albicans/genética , Diploide , Genoma Fúngico , Heterozigoto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA