Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Hum Genomics ; 17(1): 69, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37491351

RESUMO

BACKGROUND: Cardiovascular diseases (CVDs) are the leading cause of death worldwide. Genome-wide association studies (GWAS) have identified many single nucleotide polymorphisms (SNPs) appearing in non-coding genomic regions in CVDs. The SNPs may alter gene expression by modifying transcription factor (TF) binding sites and lead to functional consequences in cardiovascular traits or diseases. To understand the underlying molecular mechanisms, it is crucial to identify which variations are involved and how they affect TF binding. METHODS: The SNEEP (SNP exploration and analysis using epigenomics data) pipeline was used to identify regulatory SNPs, which alter the binding behavior of TFs and link GWAS SNPs to their potential target genes for six CVDs. The human-induced pluripotent stem cells derived cardiomyocytes (hiPSC-CMs), monoculture cardiac organoids (MCOs) and self-organized cardiac organoids (SCOs) were used in the study. Gene expression, cardiomyocyte size and cardiac contractility were assessed. RESULTS: By using our integrative computational pipeline, we identified 1905 regulatory SNPs in CVD GWAS data. These were associated with hundreds of genes, half of them non-coding RNAs (ncRNAs), suggesting novel CVD genes. We experimentally tested 40 CVD-associated non-coding RNAs, among them RP11-98F14.11, RPL23AP92, IGBP1P1, and CTD-2383I20.1, which were upregulated in hiPSC-CMs, MCOs and SCOs under hypoxic conditions. Further experiments showed that IGBP1P1 depletion rescued expression of hypertrophic marker genes, reduced hypoxia-induced cardiomyocyte size and improved hypoxia-reduced cardiac contractility in hiPSC-CMs and MCOs. CONCLUSIONS: IGBP1P1 is a novel ncRNA with key regulatory functions in modulating cardiomyocyte size and cardiac function in our disease models. Our data suggest ncRNA IGBP1P1 as a potential therapeutic target to improve cardiac function in CVDs.


Assuntos
Doenças Cardiovasculares , Polimorfismo de Nucleotídeo Único , Humanos , Polimorfismo de Nucleotídeo Único/genética , Estudo de Associação Genômica Ampla , Doenças Cardiovasculares/genética , Genômica , Genoma
2.
Breed Sci ; 73(2): 219-229, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37404344

RESUMO

To uncover population structure, phylogenetic relationship, and diversity in melons along the famous Silk Road, a seed size measurement and a phylogenetic analysis using five chloroplast genome markers, 17 RAPD markers and 11 SSR markers were conducted for 87 Kazakh melon accessions with reference accessions. Kazakh melon accessions had large seed with exception of two accessions of weedy melon, Group Agrestis, and consisted of three cytoplasm types, of which Ib-1/-2 and Ib-3 were dominant in Kazakhstan and nearby areas such as northwestern China, Central Asia and Russia. Molecular phylogeny showed that two unique genetic groups, STIa-2 with Ib-1/-2 cytoplasm and STIa-1 with Ib-3 cytoplasm, and one admixed group, STIAD combined with STIa and STIb, were prevalent across all Kazakh melon groups. STIAD melons that phylogenetically overlapped with STIa-1 and STIa-2 melons were frequent in the eastern Silk Road region, including Kazakhstan. Evidently, a small population contributed to melon development and variation in the eastern Silk Road. Conscious preservation of fruit traits specific to Kazakh melon groups is thought to play a role in the conservation of Kazakh melon genetic variation during melon production, where hybrid progenies were generated through open pollination.

3.
Breed Sci ; 73(3): 269-277, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37840980

RESUMO

Numerous genetic resources of major crops have been introduced from around the world and deposited in Japanese National Agriculture and Food Research Organization (NARO) Genebank. Understanding their genetic variation and selecting a representative subset ("core collection") are essential for optimal management and efficient use of genetic resources. In this study, we conducted genotyping-by-sequencing (GBS) to characterize the genetic relationships and population structure in 755 accessions of melon genetic resources. The GBS identified 39,324 single-nucleotide polymorphisms (SNPs) that are distributed throughout the melon genome with high density (one SNP/10.6 kb). The phylogenetic relationships and population structure inferred using this SNP dataset are highly associated with the cytoplasm type and geographical origin. Our results strongly support the recent hypothesis that cultivated melon was established in Africa and India through multiple independent domestication events. Finally, we constructed a World Melon Core Collection that covers at least 82% of the genetic diversity and has a wide range of geographical origins and fruit morphology. The genome-wide SNP dataset, phylogenetic relationships, population structure, and the core collection provided in this study should largely contribute to genetic research, breeding, and genetic resource preservation in melon.

4.
Breed Sci ; 71(5): 564-574, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35087320

RESUMO

To understand the genetic diversity and differentiation of Vietnamese melon (Cucumis melo L.), we collected 64 landraces from the central and southern parts of the country and assessed molecular polymorphism using simple sequence repeat and random amplified polymorphic DNA markers. The Vietnamese melon was divided into seven cultivar groups, namely "Dua le", "Dua vang", "Dua bo", "Dua gang-andromonoecious", "Dua gang-monoecious", "Dua thom", "Montok", and the weedy-type melon "Dua dai". Among these, Dua le, Dua vang, Dua bo, and Dua gang-andromonoecious are cultivated on plains and they formed cluster II along with the reference accessions of Conomon and Makuwa. Based on genetic distance, Dua le and Dua vang were regarded as Makuwa and Dua bo and Dua gang-andromonoecious as Conomon. In contrast, Dua thom and Montok are cultivated in highlands, and they formed cluster III along with landraces from the southern and eastern foot of the Himalayas. Dua gang-monoecious which is commonly cultivated in the southern parts of Vietnam, exhibited the greatest genetic diversity, as explained by its possible origin through the hybridization between Dua gang-andromonoecious and Montok. Genetic differences in melon landraces between plains and highlands and hybridization between these two geographical groups have contributed to the enhancement of genetic diversity in Vietnamese melon.

5.
Heliyon ; 9(2): e13069, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36747543

RESUMO

This study aims to determine the influence of consumer ethnocentrism and general country image on Vietnamese consumers' perception of product origin and purchase intention toward Chinese goods. The research model is developed based on consumer ethnocentrism and country image perception theory. Analysis results by structural equation modeling from 448 consumers in three regions (North, Central, South) showed that consumer ethnocentrism harms the country's image perception and purchase intention of Vietnamese consumers toward Chinese imported products. However, consumer ethnocentrism does not significantly affect the product country image perception. On the contrary, both the general country image and product country image positively impact Vietnamese consumers' intentions to buy Chinese imported goods. Finally, the study also points out some limitations and implications for later studies and marketers dealing with domestic products in Vietnam.

6.
Nat Commun ; 14(1): 8356, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38102112

RESUMO

Rho GTPases play a key role in the spatio-temporal coordination of cytoskeletal dynamics during cell migration. Here, we directly investigate crosstalk between the major Rho GTPases Rho, Rac and Cdc42 by combining rapid activity perturbation with activity measurements in mammalian cells. These studies reveal that Rac stimulates Rho activity. Direct measurement of spatio-temporal activity patterns show that Rac activity is tightly and precisely coupled to local cell protrusions, followed by Rho activation during retraction. Furthermore, we find that the Rho-activating Lbc-type GEFs Arhgef11 and Arhgef12 are enriched at transient cell protrusions and retractions and recruited to the plasma membrane by active Rac. In addition, their depletion reduces activity crosstalk, cell protrusion-retraction dynamics and migration distance and increases migration directionality. Thus, our study shows that Arhgef11 and Arhgef12 facilitate exploratory cell migration by coordinating cell protrusion and retraction by coupling the activity of the associated regulators Rac and Rho.


Assuntos
Tamanho Celular , Proteínas rho de Ligação ao GTP , Animais , Proteína cdc42 de Ligação ao GTP/genética , Proteína cdc42 de Ligação ao GTP/metabolismo , Membrana Celular/metabolismo , Movimento Celular , Citoesqueleto/metabolismo , Fatores de Troca do Nucleotídeo Guanina/genética , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Mamíferos/metabolismo , Proteínas rho de Ligação ao GTP/genética , Proteínas rho de Ligação ao GTP/metabolismo
7.
PLoS One ; 8(11): e79796, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24260302

RESUMO

The first morphological change after neuronal differentiation is the microtubule-dependent initiation of thin cell protrusions called neurites. Here we performed a siRNA-based morphometric screen in P19 stem cells to evaluate the role of 408 microtubule-regulating genes during this early neuromorphogenesis step. This screen uncovered several novel regulatory factors, including specific complex subunits of the microtubule motor dynein involved in neurite initiation and a novel role for the microtubule end-binding protein EB2 in attenuation of neurite outgrowth. Epistasis analysis suggests that competition between EB1 and EB2 regulates neurite length, which links its expression to neurite outgrowth. We propose a model that explains how microtubule regulators can mediate cellular morphogenesis during the early steps of neuronal development by controlling microtubule stabilization and organizing dynein-generated forces.


Assuntos
Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/genética , Microtúbulos/metabolismo , Neurogênese/genética , Neurônios/citologia , Células-Tronco/citologia , Células-Tronco/metabolismo , Animais , Diferenciação Celular/genética , Citoplasma/genética , Citoplasma/metabolismo , Complexo Dinactina , Dineínas/genética , Dineínas/metabolismo , Camundongos , Neuritos/metabolismo , Neurônios/metabolismo , Ligação Proteica/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA