Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Anal Chem ; 93(43): 14365-14368, 2021 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-34670079

RESUMO

Gas phase ion/ion reactions between singly charged radical reagent anions and multiply charged cation precursors primarily result in either proton or electron transfer. These ion/ion reactions have been extensively studied for bioanalysis, and many reagent anions have been tested and reported. Here, nitrogen-containing aromatic radical anions were tested for the ability to conduct proton or electron transfer by their reaction with the ubiquitin [M + 13H]+13 precursor. The singly charged anion of 2,2'-biquinoline was found to undergo charge inversion to singly protonated cations via near-simultaneous proton and electron transfers while reactants were bound in a single ion/ion reaction complex. Although the focus of this paper was 2,2'-biquinoline, all three nitrogen-containing aromatic compounds tested produced similar results.


Assuntos
Nitrogênio , Prótons , Ânions , Cátions , Elétrons
2.
Anal Chem ; 93(47): 15728-15735, 2021 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-34788003

RESUMO

Electron transfer dissociation (ETD) is an analytically useful tool for primary structure interrogation of intact proteins, but its utility is limited by higher-order reactions with the products. To inhibit these higher-order reactions, first-generation fragment ions are kinetically excited by applying an experimentally tailored parallel ion parking waveform during ETD (ETD-PIP). In combination with subsequent ion/ion proton transfer reactions, precursor-to-product conversion was maximized as evidenced by the consumption of more than 90% of the 21 kDa Protein G precursor to form ETD product ions. The employment of ETD-PIP increased sequence coverage to 90% from 80% with standard ETD. Additionally, the inhibition of sequential electron transfers was reflected in the high number of complementary ion pairs from ETD-PIP (90%) compared to standard ETD (39%).


Assuntos
Elétrons , Proteínas , Transporte de Elétrons , Íons , Análise de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA