Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Chemistry ; 29(37): e202300376, 2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37062705

RESUMO

Two novel nona-coordinated Eu(III) complexes [Eu(btfa)3 (Ph-TerPyr)] (Eu-1) and [Eu(NTA)3 (Ph-TerPyr)] (Eu-2) have been synthesized and characterized. The structure of the complexes was elucidated by density functional theory (DFT) methods. The experimental photophysical properties of the complexes were investigated and complemented with theoretical calculations. Effective energy transfer (ET) pathways for the sensitized red luminescence is discussed. The complexes were tested as emitting layers (EML) in organic light emitting diodes (OLEDs). At the optimum doping concentration of 4 wt.%, the double-EML OLEDs of Eu-1 exhibited red electroluminescence (EL) with an EQE of 4.0 % and maximum brightness (B)=1179 cd/m2 , maximum current efficiency (ηc )=5.64 cd/A, and maximum power efficiency (ηp )=4.78 lm/W at the current density (J) of 10 mA/cm2 . Interestingly, the double-EML OLEDs of Eu-2 at the optimum concentration of 3 wt.%, displayed an outstanding EL performance with EQE of 7.32 % and B=838 cd/m2 , ηc =10.19 cd/A and ηp =10.33 lm/W at J=10 mA/cm2 . The EL performance of this device is among the best reported for devices incorporating a europium complex as a red emitter.

2.
Inorg Chem ; 57(24): 15421-15429, 2018 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-30485082

RESUMO

We isolated a coordination polymer with the formula [Eu3(3,5-dcba)9(H2O)(dmf)3]·2dmf, with three unique EuIII coordination sites in the asymmetric unit, with the EuIII ions bridged by 3,5-dichlorobenzoato (3,5-dcba) ligands. The coordination polymer crystallized in the triclinic space group P1̅ with unit cell dimensions a = 12.4899(15), b = 16.326(2), and c = 25.059(3) Å, α = 84.271(3)°, ß = 84.832(3)°, and γ = 68.585(3)° and V = 4725.2(10) Å3. The characteristic 5D0 → 7F J ( J = 0-4) EuIII transitions were observed upon ligand-centered excitation. Emission lifetimes of 0.825 ± 0.085 and 1.586 ± 0.057 ms were observed and were attributed to the sites with coordination of water or dimethylformamide (dmf) molecules to each ion, respectively. Through a combination of spectroscopy and calculations, we determined the photophysical properties of each unique EuIII site. Energy-transfer rates ligand → EuIII were determined for each unique site using the overlapped polyhedra method. The rates depend on the coordinated water molecules and the different donor-acceptor distances. The two sites without coordinated water molecules and shortest donor-acceptor distance display the fastest energy-transfer rate ligand → EuIII, whereas the site with coordinated water molecules and longest donor-acceptor distance displays the slowest energy-transfer rate. Donor-acceptor distances were estimated computationally and were confirmed by calculating the frontier orbitals in the asymmetric units of the polymer using density functional theory.

3.
Inorg Chem ; 52(17): 10199-205, 2013 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-23944354

RESUMO

This article describes a straightforward and simple synthesis of ionically tagged water-soluble Eu(3+) and Tb(3+) complexes (with ionophilic ligands) applied for bioimaging of invasive mammal cancer cells (MDA-MB-231). Use of the task-specific ionic liquid 1-methyl-3-carboxymethyl-imidazolium chloride (MAI·Cl) as the ionophilic ligand (ionically tagged) proved to be a simple, elegant, and efficient strategy to obtain highly fluorescent water-soluble Eu(3+) (EuMAI) and Tb(3+) (TbMAI) complexes. TbMAI showed an intense bright green fluorescence emission selectively staining endoplasmic reticulum of MDA-MB-231 cells.

4.
Dalton Trans ; 51(37): 14228-14242, 2022 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-36065840

RESUMO

Two new organo-europium complexes (OEuCs) [Eu(tfac)3(TB-Im)] (Eu1) [Eu(hfac)3(TB-Im)] (Eu2) incorporating fluorinated (hexafluoroacetylacetone; Hhfaa) or hemi-fluorinated (trifluoroacetylacetone; Htfac) ß-diketones together with the large bite angle N^N ligand (2-(4-thiazolyl)benzimidazole; TB-Im) have been synthesized and characterized. The structure of the complexes has been established by single crystal X-ray diffraction (SC-XRD) analysis and shows that the coordination sphere is composed of a EuO6N2 core (octacoordinated). Continuous shape measures (CShMs) revealed that the geometry around Eu(III) is trigonal dodecahedral with approximate D2d-symmetry. Efficient red emission is observed for both the complexes in solution with a fairly large photoluminescence quantum yield (PLQY (QLEu) = 39.00-47.00%). Furthermore, by utilizing the experimental photoluminescence (PL) data and theoretical modelling employing density functional theory (DFT) in conjunction with LUMPAC, energy transfer (ET) and back energy transfer rates were calculated, and an ET mechanism for the sensitized PL is proposed and discussed in detail. Finally, the complexes were used as an emitting layer (EML) to fabricate 20 organic light emitting diodes (OLEDs) by varying the doping concentration. Interestingly, both the complex-based OLEDs at 4 wt% doping concentration display white electroluminescence (EL) with the brightness (B) = 100.5-364.1 cd m-2 at very low turn-on voltage (Vturn-on) = 3.9-4.6 V. The overall electroluminescence performance of Eu1 and Eu2 is higher than that of the reported europium based single component white-OLEDs.

5.
Dalton Trans ; 50(5): 1923, 2021 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-33496713

RESUMO

Correction for 'Utilization of a Pt(ii) di-yne chromophore incorporating a 2,2'-bipyridine-5,5'-diyl spacer as a chelate to synthesize a green and red emitting d-f-d heterotrinuclear complex' by Idris Juma Al-Busaidi et al., Dalton Trans., 2021, DOI: 10.1039/d0dt04198j.

6.
Dalton Trans ; 50(4): 1465-1477, 2021 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-33439190

RESUMO

A new heterotrinuclear (d-f-d) complex [Eu(btfa)31c] (btfa = 4,4,4-trifluoro-1-phenyl-1,3-butanedione and 1c = [(Ph)(Et3P)2Pt-C[triple bond, length as m-dash]C-R-C[triple bond, length as m-dash]C-Pt(Et3P)2(Ph)] (R = 2,2'-bipyridine-5,5'-diyl) has been synthesized by utilizing the N,N-donor sites of the organometallic chromophore. The complex was characterized by analytical and spectroscopic methods. Photophysical properties of the complex were analysed in detail using both steady-state and time-resolved emission and excitation spectroscopy. The optical absorption spectrum of the complex is dominated by the spin allowed π-π* transitions of the btfa and 1c units in the UV-visible region (200-418 nm) and thus is excitable over a wide range of wavelengths across the UV into the visible region of the electromagnetic spectrum. The complex displays typical red Eu(iii) emission when excited at 345 nm. However, it also shows green emission when excited at 464 nm and, thus could be an interesting candidate for full colour display applications. The change in the colour could be a result of the high value of the energy back-transfer rate (6.73 × 105 s-1) from the triplet state of the organometallic chromophore to the 5D1 state of Eu(iii). Judd-Ofelt (J-O) intensity parameters (Ω2 and Ω4), radiative (AR), non-radiative (AR) decay rates and intrinsic quantum yield (Q) have been calculated.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA