Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 19(8)2018 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-30061533

RESUMO

Cancer cachexia affects most patients with advanced forms of cancers. It is mainly characterized by weight loss, due to muscle and adipose mass depletion. As cachexia is associated with increased morbidity and mortality in cancer patients, identifying the underlying mechanisms leading to cachexia is essential in order to design novel therapeutic strategies. The mechanistic target of rapamycin (mTOR) is a major intracellular signalling intermediary that participates in cell growth by upregulating anabolic processes such as protein and lipid synthesis. Accordingly, emerging evidence suggests that mTOR and mTOR inhibitors influence cancer cachexia. Here, we review the role of mTOR in cellular processes involved in cancer cachexia and highlight the studies supporting the contribution of mTOR in cancer cachexia.


Assuntos
Caquexia/etiologia , Neoplasias/complicações , Serina-Treonina Quinases TOR/metabolismo , Animais , Caquexia/metabolismo , Caquexia/patologia , Proliferação de Células , Humanos , Metabolismo dos Lipídeos , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Neoplasias/metabolismo , Neoplasias/patologia , Transdução de Sinais
2.
Mol Cancer ; 15(1): 78, 2016 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-27919264

RESUMO

BACKGROUND: Blocking the mechanistic target of rapamycin complex-1 (mTORC1) with chemical inhibitors such as rapamycin has shown limited clinical efficacy in cancer. The tumor microenvironment is characterized by an acidic pH which interferes with cancer therapies. The consequences of acidity on the anti-cancer efficacy of mTORC1 inhibitors have not been characterized and are thus the focus of our study. METHODS: Cancer cell lines were treated with rapamycin in acidic or physiological conditions and cell proliferation was investigated. The effect of acidity on mTORC1 activity was determined by Western blot. The anticancer efficacy of rapamycin in combination with sodium bicarbonate to increase the intratumoral pH was tested in two different mouse models and compared to rapamycin treatment alone. Histological analysis was performed on tumor samples to evaluate proliferation, apoptosis and necrosis. RESULTS: Exposing cancer cells to acidic pH in vitro significantly reduced the anti-proliferative effect of rapamycin. At the molecular level, acidity significantly decreased mTORC1 activity, suggesting that cancer cell proliferation is independent of mTORC1 in acidic conditions. In contrast, the activation of mitogen-activated protein kinase (MAPK) or AKT were not affected by acidity, and blocking MAPK or AKT with a chemical inhibitor maintained an anti-proliferative effect at low pH. In tumor mouse models, the use of sodium bicarbonate increased mTORC1 activity in cancer cells and potentiated the anti-cancer efficacy of rapamycin. Combining sodium bicarbonate with rapamycin resulted in increased tumor necrosis, increased cancer cell apoptosis and decreased cancer cell proliferation as compared to single treatment. CONCLUSIONS: Taken together, these results emphasize the inefficacy of mTORC1 inhibitors in acidic conditions. They further highlight the potential of combining sodium bicarbonate with mTORC1 inhibitors to improve their anti-tumoral efficacy.


Assuntos
Ácidos/efeitos adversos , Neoplasias Colorretais/tratamento farmacológico , Complexos Multiproteicos/metabolismo , Sirolimo/administração & dosagem , Bicarbonato de Sódio/administração & dosagem , Serina-Treonina Quinases TOR/metabolismo , Microambiente Tumoral , Animais , Apoptose , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Neoplasias Colorretais/metabolismo , Quimioterapia Combinada , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células HT29 , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos , Complexos Multiproteicos/antagonistas & inibidores , Sirolimo/farmacologia , Bicarbonato de Sódio/farmacologia , Serina-Treonina Quinases TOR/antagonistas & inibidores , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA