Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Appl Opt ; 62(16): E24-E31, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37706885

RESUMO

Gamma-ray-induced attenuation in Al-doped and Al/Tm-co-doped optical fibers is investigated in the visible and near-infrared domain up to 1 Gy. The behavior of radiation-induced attenuation (RIA) regarding dose and dose rate is discussed. Our results reveal high sensitivities for both types of fibers at low gamma ray doses and also reveal that Al/Tm fibers are very promising at original interrogation wavelengths for dosimetry applications.

2.
Appl Opt ; 60(16): 4841-4847, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-34143038

RESUMO

Radiation-induced attenuation (RIA) at 1542 nm of fluorine-doped fibers under gamma radiation source has been investigated for different dose rates and temperatures. Both the temperature and dose rate dependencies are unusual. First, the fiber presents an enhanced low dose rate sensitivity that is favored by increasing temperature. Furthermore, in certain conditions, RIA increases with irradiation temperature, which is a very rare phenomenon. We have built a phenomenological model that shows that these behaviors can be explained considering that two color centers previously identified in the literature are responsible for RIA: inherent and strain-assisted self-trapped holes.

3.
Bioengineering (Basel) ; 10(7)2023 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-37508876

RESUMO

The traditional 3D culture systems in vitro lack the biological and mechanical spatiotemporal stimuli characteristic to native tissue development. In our study, we combined porous polysaccharide-based hydrogel scaffolds with a bioreactor-type perfusion device that generates favorable mechanical stresses while enhancing nutrient transfers. MC3T3E1 mouse osteoblasts were seeded in the scaffolds and cultivated for 3 weeks under dynamic conditions at a perfusion rate of 10 mL min-1. The spatial distribution of the cells labeled with superparamagnetic iron oxide nanoparticles was visualized by MRI. Confocal microscopy was used to assess cell numbers, their distribution inside the scaffolds, cell viability, and proliferation. The oxygen diffusion coefficient in the hydrogel was measured experimentally. Numerical simulations of the flow and oxygen transport within the bioreactor were performed using a lattice Boltzmann method with a two-relaxation time scheme. Last, the influence of cell density and spheroid size on cell oxygenation was investigated. The cells spontaneously organized into spheroids with a diameter of 30-100 µm. Cell viability remained unchanged under dynamic conditions but decreased under static culture. The cell proliferation (Ki67 expression) in spheroids was not observed. The flow simulation showed that the local fluid velocity reached 27 mm s-1 at the height where the cross-sectional area of the flow was the smallest. The shear stress exerted by the fluid on the scaffolds may locally rise to 100 mPa, compared with the average value of 25 mPa. The oxygen diffusion coefficient in the hydrogel was 1.6×10-9 m2 s-1. The simulation of oxygen transport and consumption confirmed that the cells in spheroids did not suffer from hypoxia when the bioreactor was perfused at 10 mL min-1, and suggested the existence of optimal spheroid size and spacing for appropriate oxygenation. Collectively, these findings enabled us to define the optimal conditions inside the bioreactor for an efficient in vitro cell organization and survival in spheroids, which are paramount to future applications with organoids.

4.
Langmuir ; 28(45): 15844-52, 2012 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-23072493

RESUMO

We report new experimental results on the dewetting of a mercury film (A) intercalated between a glass slab and an external nonmiscible liquid phase (B) under conditions of a large equilibrium contact angle. The viscosity of the external phase, ηB, was varied over 7 orders of magnitude. We observe a transition between two regimes of dewetting at a threshold viscosity of η(B)* ≈ (ρ(A)e|S̃|)(1/2), where ρ(A) is the mercury density, e is the film thickness, and |S̃| is the effective spreading coefficient. For η(B) < η(B)*, the regime is inertial. The velocity of dewetting is constant and ruled by Culick's law, V ≈ (|S̃|/(ρ(A)e))(1/2). Capillary waves were observed at high dewetting velocities: they are a signature of hydraulic shock. For η(B) > η(B)*, the regime is viscous. The dewetting velocity is constant and scales as V ≈ |S̃|/η(B) in the limit of large η(B). We interpret this regime by a balance between the surface energy released during dewetting and the viscous dissipation in the surrounding liquid.

5.
Biomater Adv ; 139: 212973, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35891598

RESUMO

Freeze-drying is a process of choice to texture hydrogel scaffolds with pores formed by an ice-templating mechanism. Using state-of-the-art microscopies (cryo-EBSD, µCT, CLSM), this work evidences and quantifies the effect of crosslinking and ice nucleation temperature on the porous structure of thin hydrogel scaffolds freeze-dried at a low cooling rate. We focused on a polysaccharide-based hydrogel and developed specific protocols to monitor or trigger ice nucleation for this study. At a fixed number of intermolecular crosslinks per primary molecule (p = 5), the mean pore size in the dry state decreases linearly from 240 to 170 µm, when ice nucleation temperature decreases from -6 °C to -18 °C. When ice nucleation temperature is fixed at -10 °C, the mean pore size decreases from 250 to 150 µm, as the crosslinking degree increases from p = 3 to p = 7. Scaffold infiltration ability was quantified with synthetic microspheres. The seeding efficiency was assessed with MC3T3-E1 individual cells and HepaRG™ spheroids. These data collapse into a single master curve that exhibits a sharp transition from 100 % to 0 %-efficiency as the entity diameter approaches the mean pore size in the dry state. Altogether, we can thus precisely tune the porosity of these 3D materials of interest for 3D cell culture and cGMP production for tissue engineering.


Assuntos
Hidrogéis , Gelo , Liofilização/métodos , Hidrogéis/química , Porosidade , Engenharia Tecidual/métodos
6.
Tissue Eng Regen Med ; 16(3): 225-235, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31205852

RESUMO

Background: Tissue engineering represents a promising approach for the production of bone substitutes. The use of perfusion bioreactors for the culture of bone-forming cells on a three-dimensional porous scaffold resolves mass transport limitations and provides mechanical stimuli. Despite the recent and important development of bioreactors for tissue engineering, the underlying mechanisms leading to the production of bone substitutes remain poorly understood. Methods: In order to study cell proliferation in a perfusion bioreactor, we propose a simplified experimental set-up using an impermeable scaffold model made of 2 mm diameter glass beads on which mechanosensitive cells, NIH-3T3 fibroblasts are cultured for up to 3 weeks under 10 mL/min culture medium flow. A methodology combining histological procedure, image analysis and analytical calculations allows the description and quantification of cell proliferation and tissue production in relation to the mean wall shear stress within the bioreactor. Results: Results show a massive expansion of the cell phase after 3 weeks in bioreactor compared to static control. A scenario of cell proliferation within the three-dimensional bioreactor porosity over the 3 weeks of culture is proposed pointing out the essential role of the contact points between adjacent beads. Calculations indicate that the mean wall shear stress experienced by the cells changes with culture time, from about 50 mPa at the beginning of the experiment to about 100 mPa after 3 weeks. Conclusion: We anticipate that our results will help the development and calibration of predictive models, which rely on estimates and morphological description of cell proliferation under shear stress.


Assuntos
Reatores Biológicos/efeitos adversos , Proliferação de Células , Técnicas Histológicas/métodos , Estresse Mecânico , Animais , Ciências Biocomportamentais , Substitutos Ósseos , Tamanho Celular , Hidrodinâmica , Camundongos , Células NIH 3T3 , Perfusão/métodos , Porosidade , Engenharia Tecidual/métodos
7.
Biotechnol Prog ; 35(6): e2880, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31271252

RESUMO

By favoring cell proliferation and differentiation, perfusion bioreactors proved efficient at optimizing cell culture. The aim of this study was to quantify cell proliferation within a perfusion bioreactor and correlate it to the wall shear stress (WSS) distribution by combining 3-D imaging and computational fluid dynamics simulations.NIH-3T3 fibroblasts were cultured onto a scaffold model made of impermeable polyacetal spheres or Polydimethylsiloxane cubes. After 1, 2, and 3 weeks of culture, constructs were analyzed by micro-computed tomography (µCT) and quantification of cell proliferation was assessed. After 3 weeks, the volume of cells was found four times higher in the stacking of spheres than in the stacking of cube.3D-µCT reconstruction of bioreactors was used as input for the numerical simulations. Using a lattice-Boltzmann method, we simulated the fluid flow within the bioreactors. We retrieved the WSS distribution (PDF) on the scaffolds surface at the beginning of cultivation and correlated this distribution to the local presence of cells after 3 weeks of cultivation. We found that the WSS distributions strongly differ between spheres and cubes even if the porosity and the specific wetted area of the stackings were very similar. The PDF is narrower and the mean WSS is lower for cubes (11 mPa) than for spheres (20 mPa). For the stacking of spheres, the relative occupancy of the surface sites by cells is maximal when WSS is greater than 20 mPa. For cubes, the relative occupancy is maximal when the WSS is lower than 10 mPa. The discrepancies between spheres and cubes are attributed to the more numerous sites in stacking of spheres that may induce 3-D (multi-layered) proliferation.


Assuntos
Reatores Biológicos , Alicerces Teciduais , Animais , Proliferação de Células , Hidrodinâmica , Camundongos , Células NIH 3T3 , Perfusão , Estresse Mecânico , Microtomografia por Raio-X
8.
Acta Biomater ; 94: 195-203, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31154055

RESUMO

Whereas freeze-drying is a widely used method to produce porous hydrogel scaffolds, the mechanisms of pore formation involved in this process remained poorly characterized. To explore this, we focused on a cross-linked polysaccharide-based hydrogel developed for bone tissue engineering. Scaffolds were first swollen in 0.025% NaCl then freeze-dried at low cooling rate, i.e. -0.1 °C min-1, and finally swollen in aqueous solvents of increasing ionic strength. We found that scaffold's porous structure is strongly conditioned by the nucleation of ice. Electron cryo-microscopy of frozen scaffolds demonstrates that each pore results from the growth of one to a few ice grains. Most crystals were formed by secondary nucleation since very few nucleating sites were initially present in each scaffold (0.1 nuclei cm-3 °C-1). The polymer chains are rejected in the intergranular space and form a macro-network. Its characteristic length scale coincides with the ice grain size (160 µm) and is several orders of magnitude greater than the mesh size (90 nm) of the cross-linked network. After sublimation, the ice grains are replaced by macro-pores of 280 µm mean size and the resulting dry structure is highly porous, i.e. 93%, as measured by high-resolution X-ray tomography. In the swollen state, the scaffold mean pore size decreases in aqueous solvent of increasing ionic strength (120 µm in 0.025% NaCl and 54 µm in DBPS) but the porosity remains the same, i.e. 29% regardless of the solvent. Finally, cell seeding of dried scaffolds demonstrates that the pores are adequately interconnected to allow homogenous cell distribution. STATEMENT OF SIGNIFICANCE: The fabrication of hydrogel scaffolds is an important research area in tissue engineering. Hydrogels are textured to provide a 3D-framework that is favorable for cell proliferation and/or differentiation. Optimum hydrogel pore size depends on its biological application. Producing porous hydrogels is commonly achieved through freeze-drying. However, the mechanisms of pore formation remain to be fully understood. We carefully analyzed scaffolds of a cross-linked polysaccharide-based hydrogel developed for bone tissue engineering, using state-of-the-art microscopic techniques. Our experimental results evidenced the shaping of hydrogel during the freezing step, through a specific ice-templating mechanism. These findings will guide the strategies for controlling the porous structure of hydrogel scaffolds.


Assuntos
Liofilização , Hidrogéis/química , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Células 3T3 , Animais , Materiais Biocompatíveis , Osso e Ossos , Reagentes de Ligações Cruzadas/química , Congelamento , Camundongos , Microscopia Eletrônica de Varredura , Polímeros/química , Polissacarídeos/química , Porosidade , Reologia , Solventes/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA