Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Histochem Cell Biol ; 157(2): 153-172, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34837514

RESUMO

The incidence of cutaneous malignant melanoma is increasing worldwide. While the treatment of initial stages of the disease is simple, the advanced disease frequently remains fatal despite novel therapeutic options . This requires identification of novel therapeutic targets in melanoma. Similarly to other types of tumours, the cancer microenvironment plays a prominent role and determines the biological properties of melanoma. Importantly, melanoma cell-produced exosomes represent an important tool of intercellular communication within this cancer ecosystem. We have focused on potential differences in the activity of exosomes produced by melanoma cells towards melanoma-associated fibroblasts and normal dermal fibroblasts. Cancer-associated fibroblasts were activated by the melanoma cell-produced exosomes significantly more than their normal counterparts, as assessed by increased transcription of genes for inflammation-supporting cytokines and chemokines, namely IL-6 or IL-8. We have observed that the response is dependent on the duration of the stimulus via exosomes and also on the quantity of exosomes. Our study demonstrates that melanoma-produced exosomes significantly stimulate the tumour-promoting proinflammatory activity of cancer-associated fibroblasts. This may represent a potential new target of oncologic therapy .


Assuntos
Exossomos/metabolismo , Fibroblastos/metabolismo , Melanoma Experimental/metabolismo , Fibroblastos/patologia , Humanos , Melanoma Experimental/patologia , Células Tumorais Cultivadas
2.
Int J Mol Sci ; 22(2)2021 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-33477421

RESUMO

Excessive connective tissue accumulation, a hallmark of hypertrophic scaring, results in progressive deterioration of the structure and function of organs. It can also be seen during tumor growth and other fibroproliferative disorders. These processes result from a wide spectrum of cross-talks between mesenchymal, epithelial and inflammatory/immune cells that have not yet been fully understood. In the present review, we aimed to describe the molecular features of fibroblasts and their interactions with immune and epithelial cells and extracellular matrix. We also compared different types of fibroblasts and their roles in skin repair and regeneration following burn injury. In summary, here we briefly review molecular changes underlying hypertrophic scarring following burns throughout all basic wound healing stages, i.e. during inflammation, proliferation and maturation.


Assuntos
Queimaduras/genética , Cicatriz Hipertrófica/genética , Inflamação/genética , Cicatrização/genética , Queimaduras/patologia , Proliferação de Células/genética , Cicatriz Hipertrófica/imunologia , Cicatriz Hipertrófica/patologia , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Matriz Extracelular/metabolismo , Matriz Extracelular/patologia , Fibroblastos/metabolismo , Fibroblastos/patologia , Humanos , Inflamação/patologia
3.
Int J Mol Sci ; 22(20)2021 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-34681685

RESUMO

Interleukin-6 (IL-6) is a highly potent cytokine involved in multiple biological processes. It was previously reported to play a distinct role in inflammation, autoimmune and psychiatric disorders, ageing and various types of cancer. Furthermore, it is understood that IL-6 and its signaling pathways are substantial players in orchestrating the cancer microenvironment. Thus, they appear to be potential targets in anti-tumor therapy. The aim of this article is to elucidate the role of IL-6 in the tumor ecosystem and to review the possible therapeutic approaches in head and neck cancer.


Assuntos
Neoplasias de Cabeça e Pescoço/imunologia , Interleucina-6/imunologia , Microambiente Tumoral , Neoplasias de Cabeça e Pescoço/terapia , Humanos , Inflamação , Interleucina-6/metabolismo , Transdução de Sinais
4.
Int J Mol Sci ; 22(12)2021 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-34207220

RESUMO

COVID-19 is a pandemic respiratory disease caused by the SARS-CoV-2 coronavirus. The worldwide epidemiologic data showed higher mortality in males compared to females, suggesting a hypothesis about the protective effect of estrogens against severe disease progression with the ultimate end being patient's death. This article summarizes the current knowledge regarding the potential effect of estrogens and other modulators of estrogen receptors on COVID-19. While estrogen receptor activation shows complex effects on the patient's organism, such as an influence on the cardiovascular/pulmonary/immune system which includes lower production of cytokines responsible for the cytokine storm, the receptor-independent effects directly inhibits viral replication. Furthermore, it inhibits the interaction of IL-6 with its receptor complex. Interestingly, in addition to natural hormones, phytestrogens and even synthetic molecules are able to interact with the estrogen receptor and exhibit some anti-COVID-19 activity. From this point of view, estrogen receptor modulators have the potential to be included in the anti-COVID-19 therapeutic arsenal.


Assuntos
COVID-19/patologia , Moduladores de Receptor Estrogênico/farmacologia , SARS-CoV-2/efeitos dos fármacos , Neoplasias da Mama/complicações , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , COVID-19/complicações , COVID-19/virologia , Moduladores de Receptor Estrogênico/metabolismo , Moduladores de Receptor Estrogênico/uso terapêutico , Feminino , Humanos , Receptores de Estrogênio/química , Receptores de Estrogênio/metabolismo , SARS-CoV-2/isolamento & purificação , SARS-CoV-2/fisiologia , Proteínas da Matriz Viral/antagonistas & inibidores , Proteínas da Matriz Viral/metabolismo , Internalização do Vírus/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos
5.
Histochem Cell Biol ; 154(2): 177-188, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32232553

RESUMO

The globally increasing incidence of cancer, including melanoma, requires novel therapeutic strategies. Development of successful novel drugs is based on clear identification of the target mechanisms responsible for the disease progression. The specific cancer microenvironment represents a critically important aspect of cancer biology, which cannot be properly studied in simplistic cell culture conditions. Among other traditional options, the study of melanoma cell growth on the chicken chorioallantoic membrane offers several significant advantages. This model offers increased complexity compared to usual in silico culture models and still remains financially affordable. Using this model, we studied the growth of three established human melanoma cell lines: A2058, BLM, G361. The combination of histology, immunohistochemistry with the application of human-specific antibodies, intravascular injection of contrast material such as filtered Indian ink, Mercox solution and phosphotungstic acid, and X-ray micro-CT and live-cell monitoring was employed. Melanoma cells spread well on the chicken chorioallantoic membrane. However, invasion into the stroma of the chorioallantoic membrane and the limb primordium graft was rare. The melanoma cells also significantly influenced the architecture of the blood vessel network, resulting in the orientation of the vessels to the site of the tumour cell inoculation. The system of melanoma cell culture on the chorioallantoic membrane is suitable for the study of melanoma cell growth, particularly of rearrangement of the host vascular pattern after cancer cell implantation. The system also has promising potential for further development.


Assuntos
Membrana Corioalantoide/metabolismo , Melanoma Experimental/metabolismo , Modelos Biológicos , Animais , Embrião de Galinha , Galinhas , Membrana Corioalantoide/patologia , Humanos , Imuno-Histoquímica , Melanoma Experimental/patologia , Células Tumorais Cultivadas
6.
Int J Mol Sci ; 21(21)2020 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-33114676

RESUMO

Interleukin-6 (IL-6) is a cytokine with multifaceted effects playing a remarkable role in the initiation of the immune response. The increased level of this cytokine in the elderly seems to be associated with the chronic inflammatory setting of the microenvironment in aged individuals. IL-6 also represents one of the main signals in communication between cancer cells and their non-malignant neighbours within the tumour niche. IL-6 also participates in the development of a premetastatic niche and in the adjustment of the metabolism in terminal-stage patients suffering from a malignant disease. IL-6 is a fundamental factor of the cytokine storm in patients with severe COVID-19, where it is responsible for the fatal outcome of the disease. A better understanding of the role of IL-6 under physiological as well as pathological conditions and the preparation of new strategies for the therapeutic control of the IL-6 axis may help to manage the problems associated with the elderly, cancer, and serious viral infections.


Assuntos
Envelhecimento/metabolismo , Infecções por Coronavirus/metabolismo , Interleucina-6/metabolismo , Neoplasias/metabolismo , Pneumonia Viral/metabolismo , Envelhecimento/patologia , Animais , COVID-19 , Infecções por Coronavirus/patologia , Humanos , Interleucina-6/genética , Neoplasias/patologia , Pandemias , Pneumonia Viral/patologia , Transdução de Sinais
7.
Histochem Cell Biol ; 149(5): 503-516, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29435761

RESUMO

Melanoma represents a malignant disease with steadily increasing incidence. UV-irradiation is a recognized key factor in melanoma initiation. Therefore, the efficient prevention of UV tissue damage bears a critical potential for melanoma prevention. In this study, we tested the effect of UV irradiation of normal keratinocytes and their consequent interaction with normal and cancer-associated fibroblasts isolated from melanoma, respectively. Using this model of UV influenced microenvironment, we measured melanoma cell migration in 3-D collagen gels. These interactions were studied using DNA microarray technology, immunofluorescence staining, single cell electrophoresis assay, viability (dead/life) cell detection methods, and migration analysis. We observed that three 10 mJ/cm2 fractions at equal intervals over 72 h applied on keratinocytes lead to a 50% increase (p < 0.05) in in vitro invasion of melanoma cells. The introduction cancer-associated fibroblasts to such model further significantly stimulated melanoma cells in vitro invasiveness to a higher extent than normal fibroblasts. A panel of candidate gene products responsible for facilitation of melanoma cells invasion was defined with emphasis on IL-6, IL-8, and CXCL-1. In conclusion, this study demonstrates a synergistic effect between cancer microenvironment and UV irradiation in melanoma invasiveness under in vitro condition.


Assuntos
Fibroblastos/patologia , Queratinócitos/patologia , Queratinócitos/efeitos da radiação , Melanoma/patologia , Invasividade Neoplásica , Raios Ultravioleta , Células Cultivadas , Técnicas de Cocultura , Fibroblastos/citologia , Humanos , Imuno-Histoquímica
8.
Histochem Cell Biol ; 146(2): 205-17, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27102177

RESUMO

Tumour microenvironment plays a critical role in cell invasion and metastasis. To investigate the role of cancer-associated fibroblasts (CAFs) in melanoma cell invasiveness, we used 3D spheroid invasion assay. The effect of conditioned media from normal fibroblasts and CAFs cultivated alone or co-cultivated with melanoma cells on BLM or A2058 melanoma spheroid invasion was analysed. We found that conditioned media from CAFs and CAFs co-cultured with melanoma cells, especially, promote invasion and migration, without significant effect on melanoma cell proliferation. We further analysed the expression of pro-invasive cytokines IL-8 and IL-6 in media and found that melanoma cells are dominant producers of IL-8 and fibroblasts are dominant producers of IL-6 in 2D monocultures, while co-cultivation of CAFs with melanoma cells induces production/secretion of IL-6 and IL-8 into the media. The analyses of IL-6 levels in 3D cultures and human melanoma samples, however, revealed that at least in some cases IL-6 is also produced directly by melanoma cells. Analysis of the role of IL-6 and IL-8 in CAF-induced melanoma invasion, using neutralising antibodies, revealed that simultaneous blocking of IL-6 and IL-8 is sufficient to fully inhibit CAF-induced human melanoma cell invasiveness. In summary, these experiments indicate the important role of CAFs and IL-8 and IL-6 cytokines in melanoma cell invasiveness.


Assuntos
Fibroblastos Associados a Câncer/efeitos dos fármacos , Meios de Cultivo Condicionados/farmacologia , Interleucina-6/antagonistas & inibidores , Interleucina-8/antagonistas & inibidores , Melanoma/tratamento farmacológico , Melanoma/patologia , Invasividade Neoplásica/prevenção & controle , Fibroblastos Associados a Câncer/patologia , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Técnicas de Cocultura , Ensaio de Imunoadsorção Enzimática , Humanos , Imuno-Histoquímica , Interleucina-6/análise , Interleucina-6/metabolismo , Interleucina-8/análise , Interleucina-8/metabolismo , Melanoma/metabolismo
9.
Mol Cancer ; 14: 1, 2015 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-25560632

RESUMO

BACKGROUND: Nodular melanoma is one of the most life threatening tumors with still poor therapeutic outcome. Similarly to other tumors, permissive microenvironment is essential for melanoma progression. Features of this microenvironment are arising from molecular crosstalk between the melanoma cells (MC) and the surrounding cell populations in the context of skin tissue. Here, we study the effect of melanoma cells on human primary keratinocytes (HPK). Presence of MC is as an important modulator of the tumor microenvironment and we compare it to the effect of nonmalignant lowly differentiated cells also originating from neural crest (NCSC). METHODS: Comparative morphometrical and immunohistochemical analysis of epidermis surrounding nodular melanoma (n = 100) was performed. Data were compared to results of transcriptome profiling of in vitro models, in which HPK were co-cultured with MC, normal human melanocytes, and NCSC, respectively. Differentially expressed candidate genes were verified by RT-qPCR. Biological activity of candidate proteins was assessed on cultured HPK. RESULTS: Epidermis surrounding nodular melanoma exhibits hyperplastic features in 90% of cases. This hyperplastic region exhibits aberrant suprabasal expression of keratin 14 accompanied by loss of keratin 10. We observe that MC and NCSC are able to increase expression of keratins 8, 14, 19, and vimentin in the co-cultured HPK. This in vitro finding partially correlates with pseudoepitheliomatous hyperplasia observed in melanoma biopsies. We provide evidence of FGF-2, CXCL-1, IL-8, and VEGF-A participation in the activity of melanoma cells on keratinocytes. CONCLUSION: We conclude that the MC are able to influence locally the differentiation pattern of keratinocytes in vivo as well as in vitro. This interaction further highlights the role of intercellular interactions in melanoma. The reciprocal role of activated keratinocytes on biology of melanoma cells shall be verified in the future.


Assuntos
Comunicação Celular , Diferenciação Celular , Células Epidérmicas , Queratinócitos/citologia , Queratinócitos/metabolismo , Melanoma/metabolismo , Adulto , Idoso , Diferenciação Celular/genética , Linhagem Celular Tumoral , Quimiocina CXCL1/farmacologia , Epiderme/patologia , Feminino , Fator 2 de Crescimento de Fibroblastos/farmacologia , Perfilação da Expressão Gênica , Humanos , Interleucina-8/farmacologia , Queratina-10/metabolismo , Queratina-14/metabolismo , Queratinócitos/efeitos dos fármacos , Masculino , Melanócitos/metabolismo , Melanoma/patologia , Pessoa de Meia-Idade , Metástase Neoplásica , Proteínas S100/metabolismo , Fator A de Crescimento do Endotélio Vascular/farmacologia
10.
Histochem Cell Biol ; 143(5): 463-9, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25387587

RESUMO

Cancer-associated fibroblasts are bioactive elements influencing the biological properties of malignant tumors. Their origin from different cell types has been established, and the possibility of their formation by epithelial-to-mesenchymal transition from cancer cells is under debate. This study shows that human cancer cells grafted to nu/nu mice induced formation of tumor stroma with the presence of typical smooth muscle actin-containing cancer-associated fibroblasts. These cells seem to be of the host origin because they are not recognized by an antibody specific for human vimentin, as was also verified in vitro. These results suggest that cancer-associated stromal fibroblasts are not formed by epithelial-to-mesenchymal transition from cancer cells.


Assuntos
Adenocarcinoma/patologia , Carcinoma de Células Escamosas/patologia , Linhagem da Célula , Neoplasias Colorretais/patologia , Transição Epitelial-Mesenquimal , Fibroblastos/patologia , Neoplasias de Cabeça e Pescoço/patologia , Neoplasias Faríngeas/patologia , Células Estromais/patologia , Adenocarcinoma/metabolismo , Animais , Biomarcadores Tumorais/metabolismo , Carcinoma de Células Escamosas/metabolismo , Neoplasias Colorretais/metabolismo , Feminino , Fibroblastos/metabolismo , Células HT29 , Neoplasias de Cabeça e Pescoço/metabolismo , Xenoenxertos , Humanos , Camundongos Nus , Transplante de Neoplasias , Neoplasias Faríngeas/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço , Células Estromais/metabolismo , Fatores de Tempo
11.
Tumour Biol ; 36(8): 5873-9, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25712375

RESUMO

Cancer-associated fibroblasts (CAFs) significantly influence biological properties of many tumors. The role of these mesenchymal cells is also anticipated in human gliomas. To evaluate the putative role of CAFs in glioblastoma, we tested the effect of CAF conditioned media on the proliferation and chemotaxis of glioma cells. The proliferation of glioma cells was stimulated to similar extent by both the normal fibroblasts (NFs) and CAF-conditioned media. Nevertheless, CAF-conditioned media enhanced the chemotactic migration of glioma cells significantly more potently than the media from normal fibroblasts. In order to determine whether CAF-like cells are present in human glioblastomas, immunofluorescence staining was performed on tissue samples from 20 patients using markers typical for CAFs. This analysis revealed regular presence of mesenchymal cells expressing characteristic CAF markers α-smooth muscle actin and TE-7 in human glioblastomas. These observations indicate the potential role of CAF-like cells in glioblastoma biology.


Assuntos
Movimento Celular , Meios de Cultivo Condicionados , Fibroblastos/patologia , Glioblastoma/patologia , Actinas/biossíntese , Linhagem Celular Tumoral , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Glioblastoma/genética , Humanos , Microambiente Tumoral/genética
12.
Biol Cell ; 106(7): 203-18, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24698078

RESUMO

BACKGROUND INFORMATION: The in vitro co-culture models of communication between normal fibroblasts and epithelial cells, such as keratinocytes or squamous cell carcinoma cells of FaDu line representing wound healing or cancer development, were established by non-direct contact between the cells and utilised in this study to examine epithelia-induced changes in overall fibroblast proteome patterns. RESULTS: We were able to select the proteins co-regulated in both models in order to evaluate possible molecular commonalities between wound healing and tumour development. Amongst the most pronounced were the proteins implemented in contractile activity and formation of actin cytoskeleton such as caldesmon, calponin-2, myosin regulatory light-chain 12A and cofilin-1, which were expressed independently of the presence of α-smooth muscle actin. Additionally, proteins altered differently highlighted functional and cellular phenotypes during transition of fibroblasts towards myofibroblasts or cancer-associated fibroblasts. Results showed coordinated regulation of cytoskeleton proteins selective for wound healing which were lost in tumourigenesis model. Vimentin bridged this group of proteins with other regulated proteins in human fibroblasts involved in protein or RNA processing and metabolic regulation. CONCLUSIONS: The findings provide strong support for crucial role of stromal microenvironment in wound healing and tumourigenesis. In particular, epithelia-induced protein changes in fibroblasts offer new potential targets which may lead to novel tailored cancer therapeutic strategies.


Assuntos
Carcinogênese , Proteínas do Citoesqueleto , Fibroblastos , Cicatrização , Carcinogênese/genética , Carcinogênese/patologia , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patologia , Comunicação Celular , Linhagem Celular Tumoral , Transdiferenciação Celular/genética , Técnicas de Cocultura , Proteínas do Citoesqueleto/biossíntese , Proteínas do Citoesqueleto/genética , Citoesqueleto/genética , Fibroblastos/patologia , Fibroblastos/fisiologia , Regulação da Expressão Gênica , Humanos , Queratinócitos/patologia , Queratinócitos/fisiologia , Miofibroblastos/patologia , Miofibroblastos/fisiologia , Cicatrização/genética
13.
Int J Mol Sci ; 16(10): 24094-110, 2015 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-26473842

RESUMO

Epidermal stem cells (ESCs) are crucial for maintenance and self- renewal of skin epithelium and also for regular hair cycling. Their role in wound healing is also indispensable. ESCs reside in a defined outer root sheath portion of hair follicle-also known as the bulge region. ECS are also found between basal cells of the interfollicular epidermis or mucous membranes. The non-epithelial elements such as mesenchymal stem cell-like elements of dermis or surrounding adipose tissue can also contribute to this niche formation. Cancer stem cells (CSCs) participate in formation of common epithelial malignant diseases such as basal cell or squamous cell carcinoma. In this review article, we focus on the role of cancer microenvironment with emphasis on the effect of cancer-associated fibroblasts (CAFs). This model reflects various biological aspects of interaction between cancer cell and CAFs with multiple parallels to interaction of normal epidermal stem cells and their niche. The complexity of intercellular interactions within tumor stroma is depicted on example of malignant melanoma, where keratinocytes also contribute the microenvironmental landscape during early phase of tumor progression. Interactions seen in normal bulge region can therefore be an important source of information for proper understanding to melanoma. The therapeutic consequences of targeting of microenvironment in anticancer therapy and for improved wound healing are included to article.


Assuntos
Melanoma/patologia , Células-Tronco Neoplásicas/patologia , Neoplasias Cutâneas/patologia , Nicho de Células-Tronco/fisiologia , Microambiente Tumoral/fisiologia , Animais , Células Epidérmicas , Células Epiteliais/patologia , Fibroblastos/patologia , Folículo Piloso/citologia , Humanos , Queratinócitos/patologia , Células-Tronco Mesenquimais/patologia , Cicatrização/fisiologia
14.
Chembiochem ; 15(10): 1465-70, 2014 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-24867251

RESUMO

Cancer-associated fibroblasts (CAFs) play a role in the progression of malignant tumors. They are formed by conversion of fibroblasts to smooth muscle α-actin-positive (SMA-positive) myofibroblasts. Polyamines are known to change the arrangement of the actin cytoskeleton by binding to the anionic actin. We tested the effect of the synthetic polyamine BPA-C8 on the transition of human dermal fibroblasts to myofibroblasts induced either by TGF-ß1 alone or by TGF-ß1 together with adhesion/growth-regulatory galectin-1. Pre-existing CAFs, myofibroblasts from pancreatitis, and rat smooth muscle cells were also exposed to BPA-C8. BPA-C8 impaired myofibroblast formation from activated fibroblasts, but it had no effect on cells already expressing SMA. BPA-C8 also reduced the occurrence of an extracellular matrix around the activated fibroblasts. The reported data thus extend current insights into polyamine activity, adding interference with tumor progression to the tumor-promoting processes warranting study.


Assuntos
Fibroblastos/patologia , Galectina 1/metabolismo , Miofibroblastos/efeitos dos fármacos , Miofibroblastos/patologia , Poliaminas/química , Poliaminas/farmacologia , Fator de Crescimento Transformador beta1/metabolismo , Actinas/metabolismo , Animais , Células Cultivadas , Derme/citologia , Derme/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Neoplasias/patologia , Ratos , Células Tumorais Cultivadas
15.
Oncol Rep ; 51(1)2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37975220

RESUMO

Breast cancer is the most frequently diagnosed cancer in women worldwide. Although dramatically increased survival rates of early diagnosed cases have been observed, late diagnosed patients and metastatic cancer may still be considered fatal. The present study's main focus was on cancer­associated fibroblasts (CAFs) which is an active component of the tumor microenvironment (TME) regulating the breast cancer ecosystem. Transcriptomic profiling and analysis of CAFs isolated from breast cancer skin metastasis, cutaneous basal cell carcinoma, and squamous cell carcinoma unravelled major gene candidates such as IL6, VEGFA and MFGE8 that induced co­expression of keratins­8/­14 in the EM­G3 cell line derived from infiltrating ductal breast carcinoma. Western blot analysis of selected keratins (keratin­8, ­14, ­18, ­19) and epithelial­mesenchymal transition­associated markers (SLUG, SNAIL, ZEB1, E­/N­cadherin, vimentin) revealed specific responses pointing to certain heterogeneity of the studied CAF populations. Experimental in vitro treatment using neutralizing antibodies against IL-6, VEGF­A and MFGE8 attenuated the modulatory effect of CAFs on EM­G3 cells. The present study provided novel data in characterizing and understanding the interactions between CAFs and EM­G3 cells in vitro. CAFs of different origins support the pro­inflammatory microenvironment and influence the biology of breast cancer cells. This observation potentially holds significant interest for the development of novel, clinically relevant approaches targeting the TME in breast cancer. Furthermore, its implications extend beyond breast cancer and have the potential to impact a wide range of other cancer types.


Assuntos
Neoplasias da Mama , Fibroblastos Associados a Câncer , Feminino , Humanos , Antígenos de Superfície , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Fibroblastos Associados a Câncer/metabolismo , Linhagem Celular Tumoral , Fibroblastos/metabolismo , Queratinas/genética , Queratinas/metabolismo , Células MCF-7 , Proteínas do Leite/genética , Proteínas do Leite/metabolismo , Prognóstico , Transcriptoma , Microambiente Tumoral/genética , Melanoma Maligno Cutâneo
16.
Tumour Biol ; 34(6): 3345-55, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23757003

RESUMO

Malignant melanoma is a highly aggressive tumor with increasing incidence and high mortality. The importance of immunohistochemistry in diagnosis of the primary tumor and in early identification of metastases in lymphatic nodes is enormous; however melanoma phenotype is frequently variable and thus several markers must be employed simultaneously. The purposes of this study are to describe changes of phenotype of malignant melanoma in vitro and in vivo and to investigate whether changes of environmental factors mimicking natural conditions affect the phenotype of melanoma cells and can revert the typical in vitro loss of diagnostic markers. The influence of microenvironment was studied by means of immunocytochemistry on co-cultures of melanoma cells with melanoma-associated fibroblast and/or in conditioned media. The markers typical for melanoma (HMB45, Melan-A, Tyrosinase) were lost in malignant cells isolated from malignant effusion; however, tumor metastases shared identical phenotype with primary tumor (all markers positive). The melanoma cell lines also exerted reduced phenotype in vitro. The only constantly present diagnostic marker observed in our experiment was S100 protein and, in lesser extent, also Nestin. The phenotype loss was reverted under the influence of melanoma-associated fibroblast and/or both types of conditioned media. Loss of some markers of melanoma cell phenotype is not only of diagnostic significance, but it can presumably also contribute to biological behavior of melanoma. The presented study shows how the conditions of cultivation of melanoma cells can influence their phenotype. This observation can have some impact on considerations about the role of microenvironment in tumor biology.


Assuntos
Biomarcadores Tumorais/metabolismo , Melanoma/metabolismo , Neoplasias Cutâneas/metabolismo , Técnicas de Cultura de Células , Linhagem Celular Tumoral , Células Cultivadas , Técnicas de Cocultura , Meios de Cultivo Condicionados/farmacologia , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Humanos , Imuno-Histoquímica , Imunofenotipagem , Antígeno MART-1/metabolismo , Melanoma/patologia , Antígenos Específicos de Melanoma/metabolismo , Modelos Biológicos , Monofenol Mono-Oxigenase/metabolismo , Nestina/metabolismo , Proteínas S100/metabolismo , Neoplasias Cutâneas/patologia , Células Tumorais Cultivadas , Microambiente Tumoral/efeitos dos fármacos , Antígeno gp100 de Melanoma
17.
Biol Cell ; 104(12): 738-51, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23043537

RESUMO

BACKGROUND INFORMATION: Considering an analogy between wound healing and tumour progression, we studied chemokine and cytokine transcription and expression in normal fibroblasts by co-culture and in situ. RESULTS: Whole-genome transcriptome profiling revealed strong upregulation for the interleukin (IL)-6, IL-8 and the chemokine CXCL-1 in in vitro co-cultures of normal fibroblasts with either normal or malignant epithelial cells compared to fibroblast cultures. The same ILs/chemokines were distinctly upregulated in clinical samples of squamous cell carcinoma when compared with paired normal mucosae. Analysis of culture supernatants showed that during the course of co-culture of the fibroblasts with the epithelial cells, IL-6, IL-8 and CXCL-1 were secreted to the culture medium. Experiments with addition of any of the proteins to the culture medium supported the notion that these ILs/chemokines strongly contributed to maintenance of a low-differentiation phenotype of epithelial cells, evaluated by the detection of keratin-8. Simultaneous addition of all factors increased the extent of the effect. These studies were extended by experiments with epithelial cells, either cultured in medium conditioned by preceding use for malignant keratinocytes without and in the presence of normal or cancer-associated fibroblasts or medium containing antibodies against IL-6, IL-8 and CXCL-1. CONCLUSIONS: Our results indicate an analogy between wound healing and tumour growth, support the importance of epithelial-mesenchymal interaction in this model system and establish a potential bio-inspired anticancer therapy.


Assuntos
Quimiocina CXCL1/biossíntese , Derme/metabolismo , Células Epiteliais/metabolismo , Fibroblastos/metabolismo , Regulação Neoplásica da Expressão Gênica , Interleucina-6/biossíntese , Interleucina-8/biossíntese , Proteínas de Neoplasias/biossíntese , Neoplasias Epiteliais e Glandulares/metabolismo , Linhagem Celular Tumoral , Quimiocina CXCL1/genética , Derme/patologia , Células Epiteliais/patologia , Transição Epitelial-Mesenquimal/genética , Feminino , Fibroblastos/patologia , Perfilação da Expressão Gênica , Humanos , Imuno-Histoquímica , Interleucina-6/genética , Interleucina-8/genética , Masculino , Proteínas de Neoplasias/genética , Neoplasias Epiteliais e Glandulares/patologia , Transcriptoma/genética , Regulação para Cima/genética
18.
Sci Rep ; 13(1): 19079, 2023 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-37925511

RESUMO

Soft tissue sarcomas are aggressive mesenchymal-origin malignancies. Undifferentiated pleomorphic sarcoma (UPS) belongs to the aggressive, high-grade, and least characterized sarcoma subtype, affecting multiple tissues and metastasizing to many organs. The treatment of localized UPS includes surgery in combination with radiation therapy. Metastatic forms are treated with chemotherapy. Immunotherapy is a promising treatment modality for many cancers. However, the development of immunotherapy for UPS is limited due to its heterogeneity, antigenic landscape variation, lower infiltration with immune cells, and a limited number of established patient-derived UPS cell lines for preclinical research. In this study, we established and characterized a novel patient-derived UPS cell line, JBT19. The JBT19 cells express PD-L1 and collagen, a ligand of the immune checkpoint molecule LAIR-1. JBT19 cells can form spheroids in vitro and solid tumors in immunodeficient nude mice. We found JBT19 cells induce expansion of JBT19-reactive autologous and allogeneic NK, T, and NKT-like cells, and the reactivity of the expanded cells was associated with cytotoxic impact on JBT19 cells. The PD-1 and LAIR-1 ligand-expressing JBT19 cells show ex vivo immunogenicity and effective in vivo xenoengraftment properties that can offer a unique resource in the preclinical research developing novel immunotherapeutic interventions in the treatment of UPS.


Assuntos
Histiocitoma Fibroso Maligno , Sarcoma , Camundongos , Animais , Humanos , Antígeno B7-H1/metabolismo , Camundongos Nus , Ligantes , Sarcoma/patologia , Imunoterapia , Linhagem Celular
19.
Biol Cell ; 103(5): 233-48, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21355851

RESUMO

BACKGROUND INFORMATION: Multipotent mesenchymal stem cells can participate in the formation of a microenvironment stimulating the aggressive behaviour of cancer cells. Moreover, cells exhibiting pluripotent ESC (embryonic stem cell) markers (Nanog and Oct4) have been observed in many tumours. Here, we investigate the role of cancer-associated fibroblasts in the formation of stem cell supporting properties of tumour stroma. We test the influence of fibroblasts isolated from basal cell carcinoma on mouse 3T3 fibroblasts, focusing on the expression of stem cell markers and plasticity in vitro by means of microarrays, qRT-PCR (quantitative real-time PCR) and immunohistochemistry. RESULTS: We demonstrate the biological activity of the cancer stromal fibroblasts by influencing the 3T3 fibroblasts to express markers such as Oct4, Nanog and Sox2 and to show differentiation potential similar to mesenchymal stem cells. The role of growth factors such as IGF2 (insulin-like growth factor 2), FGF7 (fibroblast growth factor 7), LEP (leptin), NGF (nerve growth factor) and TGFß (transforming growth factor ß), produced by the stromal fibroblasts, is established to participate in their bioactivity. Uninduced 3T3 do not express the stem cell markers and show minimal differentiation potential. CONCLUSIONS: Our observations indicate the pro-stem cell activity of cancer-associated fibroblasts and underline the role of epithelial-mesenchymal interaction in tumour biology.


Assuntos
Carcinoma Basocelular/patologia , Fibroblastos/metabolismo , Fibroblastos/patologia , Células-Tronco Multipotentes/metabolismo , Células Estromais/metabolismo , Células Estromais/patologia , Células 3T3 , Animais , Biomarcadores Tumorais/metabolismo , Diferenciação Celular , Separação Celular , Células Cultivadas , Técnicas de Cocultura , Transição Epitelial-Mesenquimal , Humanos , Imuno-Histoquímica , Queratinócitos/citologia , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/patologia , Camundongos , Células-Tronco Multipotentes/patologia , Fenótipo , Reação em Cadeia da Polimerase Via Transcriptase Reversa
20.
In Vivo ; 36(3): 1236-1244, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35478102

RESUMO

BACKGROUND/AIM: We have previously shown that the water extract of Agrimonia eupatoria L. (AE) is a valuable source of polyphenols with excellent antioxidant properties and has clinical potential for the prevention and/or adjuvant therapy of cardiovascular complications associated with diabetes. Inspired by our previously published data, in the present study we examined whether AE improves skin wound healing in a series of in vitro and in vivo experiments. MATERIALS AND METHODS: In detail, we investigated the ability of the AE extract to induce fibroblast to myofibroblast conversion, extracellular matrix (ECM) deposition, and keratinocyte proliferation/differentiation, in vitro. In parallel, in an animal model, we measured wound tensile strength (TS) and assessed the progression of open wounds using basic histology and immunofluorescence. RESULTS: The AE extract induced the myofibroblast-like phenotype and enhanced ECM deposition, both in vitro and in vivo. Furthermore, the wound TS of skin incisions and the contraction rates of open excisions were significantly increased in the AE-treated group. CONCLUSION: The present data show that AE water extract significantly improves the healing of open and sutured skin wounds. Therefore, our data warrant further testing in animal models that are physiologically and evolutionarily closer to humans.


Assuntos
Agrimonia , Animais , Modelos Animais de Doenças , Fibroblastos , Queratinócitos , Extratos Vegetais/farmacologia , Ratos , Água , Cicatrização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA