Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Biomedicines ; 11(7)2023 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-37509683

RESUMO

Despite disadvantages, such as high cost and their poor predictive value, animal experiments are still the state of the art for pharmaceutical substance testing. One reason for this problem is the inability of standard cell culture methods to emulate the physiological environment necessary to recapitulate in vivo processes. Microphysiological systems offer the opportunity to close this gap. In this study, we utilize a previously employed microphysiological system to examine the impact of pressure and flow on the transportation of substances mediated by multidrug resistance protein 1 (MDR1) across an artificial cell-based tubular barrier. By using a miniaturized fluorescence measurement device, we could continuously track the MDR1-mediated transport of rhodamine 123 above the artificial barrier over 48 h. We proved that applying pressure and flow affects both active and passive transport of rhodamine 123. Using experimental results and curve fittings, the kinetics of MDR1-mediated transport as well as passive transport were investigated; thus, a kinetic model that explains this transport above an artificial tubular barrier was identified. This kinetic model demonstrates that the simple Michaelis-Menten model is not an appropriate model to explain the MDR1-mediated transport; instead, Hill kinetics, with Hill slope of n = 2, is a better fit. The kinetic values, Km, Vmax, and apparent permeability (Papp), obtained in this study are comparable with other in vivo and in vitro studies. Finally, the presented proximal tubule-on-a-chip can be used for pharmaceutical substance testing and to investigate pharmacokinetics of the renal transporter MDR1.

2.
Theranostics ; 13(8): 2531-2551, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37215570

RESUMO

Prolonged inflammation after spinal cord injury is detrimental to recovery. To find pharmacological modulators of the inflammation response, we designed a rapid drug screening paradigm in larval zebrafish followed by testing of hit compounds in a mouse spinal cord injury model. Methods: We used reduced il-1ß linked green fluorescent protein (GFP) reporter gene expression as a read-out for reduced inflammation in a screen of 1081 compounds in larval zebrafish. Hit drugs were tested in a moderate contusion model in mice for cytokine regulation, and improved tissue preservation and locomotor recovery. Results: Three compounds robustly reduced il-1ß expression in zebrafish. Cimetidine, an over-the-counter H2 receptor antagonist, also reduced the number of pro-inflammatory neutrophils and rescued recovery after injury in a zebrafish mutant with prolonged inflammation. Cimetidine action on il-1ß expression levels was abolished by somatic mutation of H2 receptor hrh2b, suggesting specific action. In mice, systemic treatment with Cimetidine led to significantly improved recovery of locomotor behavior as compared to controls, accompanied by decreased neuronal tissue loss and a shift towards a pro-regenerative profile of cytokine gene expression. Conclusion: Our screen revealed H2 receptor signaling as a promising target for future therapeutic interventions in spinal cord injury. This work highlights the usefulness of the zebrafish model for rapid screening of drug libraries to identify therapeutics to treat mammalian spinal cord injury.


Assuntos
Traumatismos da Medula Espinal , Peixe-Zebra , Camundongos , Animais , Peixe-Zebra/metabolismo , Cimetidina/farmacologia , Cimetidina/metabolismo , Cimetidina/uso terapêutico , Larva , Avaliação Pré-Clínica de Medicamentos , Traumatismos da Medula Espinal/metabolismo , Inflamação/tratamento farmacológico , Inflamação/complicações , Citocinas/metabolismo , Mamíferos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA