Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Ann Vasc Surg ; 49: 191-205, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29518504

RESUMO

BACKGROUND: Paraplegia due to spinal cord ischemia (SCI) is a serious complication after repair of thoracoabdominal aortic aneurysms. For prevention and early treatment of spinal ischemia, intraoperative monitoring of spinal cord integrity is essential. This study was intended to improve recognition of SCI through a combination of transcranial motor-evoked potentials (tc-MEPs), serum markers, and innovative breath analysis. METHODS: In 9 female German Landrace pigs, tc-MEPs were captured, markers of neuronal damage were determined in blood, and volatile organic compounds (VOCs) were analyzed in exhaled air. After thoraco-phrenico-laparotomy, SCI was initiated through sequential clamping (n = 4) or permanently ligating (n = 5) SAs of the abdominal and thoracic aorta in caudocranial orientation until a drop in the tc-MEPs to at least 25% of the baseline was recorded. VOCs in breath were determined by means of solid-phase microextraction coupled with gas chromatography-mass spectrometry. After waking up, clinical and neurological status was evaluated (Tarlov score). Spinal cord histology was obtained in postmortem. RESULTS: Permanent vessel ligature induced a worse neurological outcome and a higher number of necrotic motor neurons compared to clamping. Changes of serum markers remained unspecific. After laparotomy, exhaled acetone and isopropanol showed highest concentrations, and pentane and hexane increased during ischemia-reperfusion injury. CONCLUSIONS: To mimic spinal ischemia occurring in humans during aortic aneurysm repair, animal models have to be meticulously evaluated concerning vascular anatomy and function. Volatiles from breath indicated metabolic stress during surgery and oxidative damage through ischemia reperfusion. Breath VOCs may provide complimentary information to conventional monitoring methods.


Assuntos
Aorta Abdominal/cirurgia , Aorta Torácica/cirurgia , Biomarcadores/sangue , Testes Respiratórios/métodos , Potencial Evocado Motor , Monitorização Neurofisiológica Intraoperatória/métodos , Isquemia do Cordão Espinal/diagnóstico , Compostos Orgânicos Voláteis/metabolismo , Animais , Constrição , Modelos Animais de Doenças , Feminino , Cromatografia Gasosa-Espectrometria de Massas , Ligadura , Neurônios Motores/metabolismo , Neurônios Motores/patologia , Estresse Oxidativo , Valor Preditivo dos Testes , Microextração em Fase Sólida , Isquemia do Cordão Espinal/sangue , Isquemia do Cordão Espinal/etiologia , Isquemia do Cordão Espinal/fisiopatologia , Sus scrofa , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA