Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Br J Cancer ; 130(8): 1377-1387, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38396173

RESUMO

BACKGROUND/OBJECTIVE: To explore the anti-tumour activity of combining AKT inhibition and docetaxel in PTEN protein null and WT prostate tumours. METHODS: Mechanisms associated with docetaxel capivasertib treatment activity in prostate cancer were examined using a panel of in vivo tumour models and cell lines. RESULTS: Combining docetaxel and capivasertib had increased activity in PTEN null and WT prostate tumour models in vivo. In vitro short-term docetaxel treatment caused cell cycle arrest in the majority of cells. However, a sub-population of docetaxel-persister cells did not undergo G2/M arrest but upregulated phosphorylation of PI3K/AKT pathway effectors GSK3ß, p70S6K, 4E-BP1, but to a lesser extent AKT. In vivo acute docetaxel treatment induced p70S6K and 4E-BP1 phosphorylation. Treating PTEN null and WT docetaxel-persister cells with capivasertib reduced PI3K/AKT pathway activation and cell cycle progression. In vitro and in vivo it reduced proliferation and increased apoptosis or DNA damage though effects were more marked in PTEN null cells. Docetaxel-persister cells were partly reliant on GSK3ß as a GSK3ß inhibitor AZD2858 reversed capivasertib-induced apoptosis and DNA damage. CONCLUSION: Capivasertib can enhance anti-tumour effects of docetaxel by targeting residual docetaxel-persister cells, independent of PTEN status, to induce apoptosis and DNA damage in part through GSK3ß.


Assuntos
Neoplasias da Próstata , Proteínas Proto-Oncogênicas c-akt , Pirimidinas , Pirróis , Masculino , Humanos , Docetaxel/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Proteínas Quinases S6 Ribossômicas 70-kDa/farmacologia , Transdução de Sinais , Apoptose , Fosfatidilinositol 3-Quinases/metabolismo , Glicogênio Sintase Quinase 3 beta , Linhagem Celular Tumoral , Pontos de Checagem da Fase G2 do Ciclo Celular , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/metabolismo , PTEN Fosfo-Hidrolase/metabolismo
2.
Clin Pharmacokinet ; 2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-39127854

RESUMO

BACKGROUND AND OBJECTIVE: Overactivation of the PI3K/AKT pathway can occur in many cancers. Capivasertib is a potent, selective pan-AKT inhibitor. The objectives of this analysis were to develop a population pharmacokinetic model for capivasertib and to quantitatively assess the impact of intrinsic and extrinsic factors on the pharmacokinetics of capivasertib. METHODS: Pharmacokinetic data from four phase I and II studies were combined. Capivasertib was administered orally at a dose range of 80-800 mg twice daily over 28-day and 21-day cycles as monotherapy or in combination with paclitaxel or fulvestrant, using continuous dosing or one of two intermittent dosing schedules: either 4 days on, 3 days off (4/3) or 2 days on, 5 days off (2/5). Several models and approaches were tested for their ability to describe capivasertib disposition. The covariates assessed included dose, schedule, age, body weight, race, sex, creatinine clearance, hepatic function, renal function, smoking status, food effect, formulation, and concomitant use with paclitaxel, fulvestrant, cytochrome P450, family 3, subfamily A (CYP3A) inducers, CYP3A inhibitors and acid-reducing agents. RESULTS: A total of 3963 capivasertib plasma concentrations from 441 patients were included. Capivasertib pharmacokinetics was adequately described by a three-compartment model where the apparent clearance (CL/F) presented a moderate time-dependent and dose-dependent clearance. Following oral administration of multiple doses of capivasertib (400 mg twice daily; [4/3]), the initial CL/F was 62.2 L/h (between-subject variability 39.3%), and after approximately 120 hours, CL/F decreased by 18%. The effective half-life was 8.34 h. Steady state was predicted to be reached on every third and fourth dosing day each week from the second week with exposure levels that produced robust inhibition of AKT but not of other related kinases. The area under the plasma concentration-time curve and maximum plasma concentration of capivasertib were proportional between the dose levels of 80-480 mg after multiple doses but more than proportional beyond 480 mg. Schedule, age, race, sex, creatinine clearance, hepatic function, renal function, smoking status and concomitant use with fulvestrant, CYP3A inducers, CYP3A inhibitors or acid-reducing agents were not significant covariates for capivasertib pharmacokinetics. Concomitant use of paclitaxel, food effect and formulation statistically significantly affected capivasertib pharmacokinetics, but the effect was low. Body weight was statistically significantly related to capivasertib CL/F, with a 12% reduction in CL/F at steady state and a 14% increase in the area under the curve for 12 hours at steady state and maximum concentration at steady state at a lower body weight (47 kg vs 67 kg reference). CONCLUSIONS: Capivasertib pharmacokinetics showed moderate between-subject variability, and most covariates assessed had no significant impact. Body weight, dose, concomitant use of paclitaxel, food effect and formulation showed statistically significant effects. However, these were predicted to impact exposure to capivasertib by <20% and were not expected to be clinically relevant. Based on the population pharmacokinetics, no a priori dose adjustment is needed for intrinsic and extrinsic factors.

3.
Clin Pharmacol Drug Dev ; 12(9): 856-862, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37449963

RESUMO

Capivasertib is a potent, selective inhibitor of all 3 Akt isoforms (Akt1/2/3), and it is currently being tested in Phase III trials for the treatment of prostate and breast cancer. To investigate the effect of a cytochrome P450 3A4 (CYP3A4) inhibitor on the pharmacokinetics of capivasertib, a Phase I drug-drug interaction study of capivasertib and itraconazole was conducted in 11 healthy volunteers (median age, 54 years). The 8-day study had 3 stages: Participants received a single dose of capivasertib 80 mg in Stage 1, 4 doses of itraconazole 200 mg over 3 days in Stage 2, and a final dose of capivasertib 80 mg coadministered with itraconazole 200 mg in Stage 3. Capivasertib pharmacokinetics were examined in Stages 1 and 3. Itraconazole coadministration increased the maximum plasma concentration of capivasertib and total capivasertib exposure (area under the concentration-time curve from time of administration to infinity) by 1.70-fold (90% confidence interval, 1.56-1.86) and 1.95-fold (90% confidence interval, 1.82-2.10), respectively.


Assuntos
Inibidores do Citocromo P-450 CYP3A , Itraconazol , Humanos , Pessoa de Meia-Idade , Citocromo P-450 CYP3A/metabolismo , Inibidores do Citocromo P-450 CYP3A/farmacologia , Interações Medicamentosas , Voluntários Saudáveis , Itraconazol/farmacocinética , Inibidores de Proteínas Quinases/farmacocinética , Proteínas Proto-Oncogênicas c-akt , Serina , Treonina
4.
NPJ Breast Cancer ; 9(1): 64, 2023 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-37543694

RESUMO

Combining the selective AKT inhibitor, capivasertib, and SERD, fulvestrant improved PFS in a Phase III clinical trial (CAPItello-291), treating HR+ breast cancer patients following aromatase inhibitors, with or without CDK4/6 inhibitors. However, clinical data suggests CDK4/6 treatment may reduce response to subsequent monotherapy endocrine treatment. To support understanding of trials such as CAPItello-291 and gain insight into this emerging population of patients, we explored how CDK4/6 inhibitor treatment influences ER+ breast tumour cell function and response to fulvestrant and capivasertib after CDK4/6 inhibitor treatment. In RB+, RB- T47D and MCF7 palbociclib-resistant cells ER pathway ER and Greb-1 expression were reduced versus naïve cells. PI3K-AKT pathway activation was also modified in RB+ cells, with capivasertib less effective at reducing pS6 in RB+ cells compared to parental cells. Expression profiling of parental versus palbociclib-resistant cells confirmed capivasertib, fulvestrant and the combination differentially impacted gene expression modulation in resistant cells, with different responses seen in T47D and MCF7 cells. Fulvestrant inhibition of ER-dependent genes was reduced. In resistant cells, the combination was less effective at reducing cell cycle genes, but a consistent reduction in cell fraction in S-phase was observed in naïve and resistant cells. Despite modified signalling responses, both RB+ and RB- resistant cells responded to combination treatment despite some reduction in relative efficacy and was effective in vivo in palbociclib-resistant PDX models. Collectively these findings demonstrate that simultaneous inhibition of AKT and ER signalling can be effective in models representing palbociclib resistance despite changes in pathway dependency.

5.
Oncogene ; 41(46): 5046-5060, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36241868

RESUMO

The PI3K pathway is commonly activated in breast cancer, with PI3K-AKT pathway inhibitors used clinically. However, mechanisms that limit or enhance the therapeutic effects of PI3K-AKT inhibitors are poorly understood at a genome-wide level. Parallel CRISPR screens in 3 PTEN-null breast cancer cell lines identified genes mediating resistance to capivasertib (AKT inhibitor) and AZD8186 (PI3Kß inhibitor). The dominant mechanism causing resistance is reactivated PI3K-AKT-mTOR signalling, but not other canonical signalling pathways. Deletion of TSC1/2 conferred resistance to PI3Kßi and AKTi through mTORC1. However, deletion of PIK3R2 and INPPL1 drove specific PI3Kßi resistance through AKT. Conversely deletion of PIK3CA, ERBB2, ERBB3 increased PI3Kßi sensitivity while modulation of RRAGC, LAMTOR1, LAMTOR4 increased AKTi sensitivity. Significantly, we found that Mcl-1 loss enhanced response through rapid apoptosis induction with AKTi and PI3Kßi in both sensitive and drug resistant TSC1/2 null cells. The combination effect was BAK but not BAX dependent. The Mcl-1i + PI3Kß/AKTi combination was effective across a panel of breast cancer cell lines with PIK3CA and PTEN mutations, and delivered increased anti-tumor benefit in vivo. This study demonstrates that different resistance drivers to PI3Kßi and AKTi converge to reactivate PI3K-AKT or mTOR signalling and combined inhibition of Mcl-1 and PI3K-AKT has potential as a treatment strategy for PI3Kßi/AKTi sensitive and resistant breast tumours.


Assuntos
Antineoplásicos , Neoplasias da Mama , Humanos , Feminino , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Alvo Mecanístico do Complexo 1 de Rapamicina , Linhagem Celular Tumoral , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Antineoplásicos/farmacologia , Inibidores de Fosfoinositídeo-3 Quinase , Serina-Treonina Quinases TOR/metabolismo , Classe I de Fosfatidilinositol 3-Quinases/genética , Fatores de Troca do Nucleotídeo Guanina
6.
Angiogenesis ; 13(4): 337-47, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20953695

RESUMO

Vascular Endothelial Growth Factor Receptor (VEGFR) mediated signalling drives angiogenesis. This is predominantly attributed to the activity of VEGFR-2 following binding of VEGF-A. Whether other members of the VEGFR and ligand families such as VEGFR-1 and its ligand Placental Growth Factor (PlGF) can also contribute to developmental and pathological angiogenesis is less clear. We explored the function of PlGF in VEGF-A dependent angiogenesis using an in vitro co-culture assay in which endothelial cells are cultured on a fibroblast feeder layer. In the presence of 2% FS MCDB media (containing limited growth factors) in vitro endothelial tube formation is driven by endogenous angiogenic stimuli which are produced by the fibroblast and endothelial cells. Under these conditions independent sequestration of either free VEGF-A or PlGF with polyclonal and monoclonal antibodies inhibited tube formation suggesting that both ligands are required to drive an angiogenic response. Endothelial tube formation could only be driven within this assay by the addition of exogenous VEGF-A, VEGF-E or VEGF-A/PlGF heterodimer, but not by PlGF alone, implying that activation of either VEGFR-2/VEGFR-1 heterodimers or VEGFR-2 homodimers were responsible for eliciting an angiogenic response directly, but not VEGFR-1 homodimers. In contrast to results obtained with an endogenous angiogenic drive, sequestration of PlGF did not affect endothelial tube formation when the assay was driven by 1 ng/ml exogenous VEGF-A. These data suggest that although neutralising PlGF can be shown to reduce endothelial tube formation in vitro, this effect is only observed under restricted culture conditions and is influenced by VEGF-A. Such data questions whether neutralising PlGF would have a therapeutic benefit in vivo in the presence of pathological concentrations of VEGF-A.


Assuntos
Anticorpos Neutralizantes/farmacologia , Neovascularização Patológica/prevenção & controle , Proteínas da Gravidez/imunologia , Inibidores da Angiogênese/farmacologia , Capilares/efeitos dos fármacos , Capilares/crescimento & desenvolvimento , Capilares/metabolismo , Células Cultivadas , Técnicas de Cocultura , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/fisiologia , Humanos , Modelos Teóricos , Neovascularização Patológica/metabolismo , Neovascularização Patológica/patologia , Técnicas de Cultura de Órgãos , Fator de Crescimento Placentário , Proteínas da Gravidez/antagonistas & inibidores , Proteínas da Gravidez/farmacologia , Multimerização Proteica/efeitos dos fármacos , Receptores de Fatores de Crescimento do Endotélio Vascular/metabolismo , Fatores de Crescimento do Endotélio Vascular/metabolismo
9.
Eur J Pharm Sci ; 101: 228-242, 2017 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-28163163

RESUMO

Many chemotherapeutics suffer from poor aqueous solubility and tissue selectivity. Distearoylphosphatidylethanolamine-poly(ethylene glycol) (DSPE-PEG) micelles are a promising formulation strategy for the delivery of hydrophobic anticancer drugs. However, storage and in vivo instability restrict their use. The aim of this study was to prepare mixed micelles, containing a novel polymer, lipoic acid-chitosan-poly(ethylene glycol) (LACPEG), and DSPE-PEG, to overcome these limitations and potentially increase cancer cell internalisation. Drug-loaded micelles were prepared with a model tyrosine kinase inhibitor and characterized for size, surface charge, stability, morphology, drug entrapment efficiency, cell viability (A549 and PC-9 cell lines), in vivo biodistribution, ex vivo tumor accumulation and cellular internalisation. Micelles of size 30-130nm with entrapment efficiencies of 46-81% were prepared. LACPEG/DSPE-PEG mixed micelles showed greater interaction with the drug (condensing to half their size following entrapment), greater stability, and a safer profile in vitro compared to DSPE-PEG micelles. LACPEG/DSPE-PEG and DSPE-PEG micelles had similar entrapment efficiencies and in vivo tumor accumulation levels, but LACPEG/DSPE-PEG micelles showed higher tumor cell internalisation. Collectively, these findings suggest that LACPEG/DSPE-PEG mixed micelles provide a promising platform for tumor delivery of hydrophobic drugs.


Assuntos
Antineoplásicos/química , Quitosana/química , Fosfatidiletanolaminas/química , Polietilenoglicóis/química , Polímeros/química , Células A549 , Animais , Antineoplásicos/metabolismo , Linhagem Celular Tumoral , Química Farmacêutica/métodos , Portadores de Fármacos/química , Feminino , Humanos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Micelas , Tamanho da Partícula , Solubilidade , Distribuição Tecidual/efeitos dos fármacos
10.
Oncotarget ; 7(52): 86313-86325, 2016 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-27861144

RESUMO

Metabolic plasticity is an emerging hallmark of cancer, and increased glycolysis is often observed in transformed cells. Small molecule inhibitors that target driver oncogenes can potentially inhibit the glycolytic pathway. Osimertinib (AZD9291) is a novel EGFR tyrosine kinase inhibitor (TKI) that is potent and selective for sensitising (EGFRm) and T790M resistance mutations. Clinical studies have shown osimertinib to be efficacious in patients with EGFRm/ T790M advanced NSCLC who have progressed after EGFR-TKI treatment. However experience with targeted therapies suggests that acquired resistance may emerge. Thus there is a need to characterize resistance mechanisms and to devise ways to prevent, delay or overcome osimertinib resistance. We show here that osimertinib suppresses glycolysis in parental EGFR-mutant lung adenocarcinoma lines, but has not in osimertinib-resistant cell lines. Critically, we show osimertinib treatment induces a strict dependence on mitochondrial oxidative phosphorylation (OxPhos), as OxPhos inhibitors significantly delay the long-term development of osimertinib resistance in osimertinib-sensitive lines. Accordingly, growth conditions which promote a less glycolytic phenotype confer a degree of osimertinib resistance. Our data support a model in which the combination of osimertinib and OxPhos inhibitors can delay or prevent resistance in osimertinib-naïve tumour cells, and represents a novel strategy that warrants further pre-clinical investigation.


Assuntos
Adenocarcinoma/tratamento farmacológico , Antineoplásicos/farmacologia , Receptores ErbB/antagonistas & inibidores , Neoplasias Pulmonares/tratamento farmacológico , Fosforilação Oxidativa/efeitos dos fármacos , Piperazinas/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Acrilamidas , Adenocarcinoma/patologia , Adenocarcinoma de Pulmão , Compostos de Anilina , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Receptores ErbB/genética , Glicólise/efeitos dos fármacos , Humanos , Neoplasias Pulmonares/patologia
11.
ACS Med Chem Lett ; 7(5): 514-9, 2016 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-27190603

RESUMO

A novel series of covalent inhibitors of EGFR (epidermal growth factor receptor) kinase was discovered through a combination of subset screening and structure-based design. These compounds preferentially inhibit mutant forms of EGFR (activating mutant and T790M mutant) over wild-type EGFR in cellular assays measuring EGFR autophosphorylation and proliferation, suggesting an improved therapeutic index in non-small cell lung cancer patients would be achievable relative to established EGFR inhibitors. We describe our design approaches, resulting in the identification of the lead compound 5, and our efforts to develop an understanding of the structure-activity relationships within this series. In addition, strategies to overcome challenges around metabolic stability and aqueous solubility are discussed. Despite limitations in its physical properties, 5 is orally bioavailable in mice and demonstrates pronounced antitumor activity in in vivo models of mutant EGFR-driven cancers.

12.
Pharmacol Res Perspect ; 3(5): e00175, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26516587

RESUMO

Off-target pharmacology may contribute to both adverse and beneficial effects of a new drug. In vitro pharmacological profiling is often applied early in drug discovery; there are fewer reports addressing the relevance of broad profiles to clinical adverse effects. Here, we have characterized the pharmacological profile of the active metabolite of fostamatinib, R406, linking an understanding of drug selectivity to the increase in blood pressure observed in clinical studies. R406 was profiled in a broad range of in vitro assays to generate a comprehensive pharmacological profile and key targets were further investigated using functional and cellular assay systems. A combination of traditional literature searches and text-mining approaches established potential mechanistic links between the profile of R406 and clinical side effects. R406 was selective outside the kinase domain, with only antagonist activity at the adenosine A3 receptor in the range relevant to clinical effects. R406 was less selective in the kinase domain, having activity at many protein kinases at therapeutically relevant concentrations when tested in multiple in vitro systems. Systematic literature analyses identified KDR as the probable target underlying the blood pressure increase observed in patients. While the in vitro pharmacological profile of R406 suggests a lack of selectivity among kinases, a combination of classical searching and text-mining approaches rationalized the complex profile establishing linkage between off-target pharmacology and clinically observed effects. These results demonstrate the utility of in vitro pharmacological profiling for a compound in late-stage clinical development.

13.
Cancer Discov ; 4(9): 1046-61, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24893891

RESUMO

UNLABELLED: First-generation EGFR tyrosine kinase inhibitors (EGFR TKI) provide significant clinical benefit in patients with advanced EGFR-mutant (EGFRm(+)) non-small cell lung cancer (NSCLC). Patients ultimately develop disease progression, often driven by acquisition of a second T790M EGFR TKI resistance mutation. AZD9291 is a novel oral, potent, and selective third-generation irreversible inhibitor of both EGFRm(+) sensitizing and T790M resistance mutants that spares wild-type EGFR. This mono-anilino-pyrimidine compound is structurally distinct from other third-generation EGFR TKIs and offers a pharmacologically differentiated profile from earlier generation EGFR TKIs. Preclinically, the drug potently inhibits signaling pathways and cellular growth in both EGFRm(+) and EGFRm(+)/T790M(+) mutant cell lines in vitro, with lower activity against wild-type EGFR lines, translating into profound and sustained tumor regression in EGFR-mutant tumor xenograft and transgenic models. The treatment of 2 patients with advanced EGFRm(+) T790M(+) NSCLC is described as proof of principle. SIGNIFICANCE: We report the development of a novel structurally distinct third-generation EGFR TKI, AZD9291, that irreversibly and selectively targets both sensitizing and resistant T790M(+) mutant EGFR while harboring less activity toward wild-type EGFR. AZD9291 is showing promising responses in a phase I trial even at the first-dose level, with first published clinical proof-of-principle validation being presented.


Assuntos
Acrilamidas/uso terapêutico , Compostos de Anilina/uso terapêutico , Antineoplásicos/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/genética , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/genética , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Mutação , Inibidores de Proteínas Quinases/uso terapêutico , Acrilamidas/química , Acrilamidas/farmacologia , Compostos de Anilina/química , Compostos de Anilina/farmacologia , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Receptores ErbB/química , Feminino , Genes erbB-2 , Humanos , Neoplasias Pulmonares/patologia , Masculino , Pessoa de Meia-Idade , Modelos Moleculares , Conformação Molecular , Fosforilação , Ligação Proteica , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Transdução de Sinais/efeitos dos fármacos , Resultado do Tratamento , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
14.
J Med Chem ; 56(17): 7025-48, 2013 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-23930994

RESUMO

A novel series of small-molecule inhibitors has been developed to target the double mutant form of the epidermal growth factor receptor (EGFR) tyrosine kinase, which is resistant to treatment with gefitinib and erlotinib. Our reported compounds also show selectivity over wild-type EGFR. Guided by molecular modeling, this series was evolved to target a cysteine residue in the ATP binding site via covalent bond formation and demonstrates high levels of activity in cellular models of the double mutant form of EGFR. In addition, these compounds show significant activity against the activating mutations, which gefitinib and erlotinib target and inhibition of which gives rise to their observed clinical efficacy. A glutathione (GSH)-based assay was used to measure thiol reactivity toward the electrophilic functionality of the inhibitor series, enabling both the identification of a suitable reactivity window for their potency and the development of a reactivity quantitative structure-property relationship (QSPR) to support design.


Assuntos
Receptores ErbB/antagonistas & inibidores , Receptores ErbB/química , Receptores ErbB/genética , Modelos Moleculares , Mutação , Relação Estrutura-Atividade
15.
Mol Cancer Ther ; 11(8): 1650-60, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22679110

RESUMO

The Notch signaling pathway has been implicated in cell fate determination and differentiation in many tissues. Accumulating evidence points toward a pivotal role in blood vessel formation, and the importance of the Delta-like ligand (Dll) 4-Notch1 ligand-receptor interaction has been shown in both physiological and tumor angiogenesis. Disruption of this interaction leads to a reduction in tumor growth as a result of an increase in nonfunctional vasculature leading to poor perfusion of the tumor. MEDI0639 is an investigational human therapeutic antibody that targets Dll4 to inhibit the interaction between Dll4 and Notch1. The antibody cross-reacts to cynomolgus monkey but not mouse species orthologues. In vitro MEDI0639 inhibits the binding of Notch1 to Dll4, interacting via a novel epitope that has not been previously described. Binding to this epitope translates into MEDI0639 reversing Notch1-mediated suppression of human umbilical vein endothelial cell growth in vitro. MEDI0639 administration resulted in stimulation of tubule formation in a three-dimensional (3D) endothelial cell outgrowth assay, a phenotype driven by disruption of the Dll4-Notch signaling axis. In contrast, in a two-dimensional endothelial cell-fibroblast coculture model, MEDI0639 is a potent inhibitor of tubule formation. In vivo, MEDI0639 shows activity in a human endothelial cell angiogenesis assay promoting human vessel formation and reducing the number of vessels with smooth muscle actin-positive mural cells coverage. Collectively, the data show that MEDI0639 is a potent modulator of Dll4-Notch signaling pathway.


Assuntos
Anticorpos Monoclonais/farmacologia , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/antagonistas & inibidores , Proteínas de Membrana/antagonistas & inibidores , Neovascularização Fisiológica/efeitos dos fármacos , Animais , Anticorpos Monoclonais/administração & dosagem , Anticorpos Monoclonais/metabolismo , Linhagem Celular , Mapeamento de Epitopos , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana/metabolismo , Camundongos , Camundongos SCID , Neovascularização Patológica , Ligação Proteica , Receptores Notch/metabolismo , Transdução de Sinais/efeitos dos fármacos
16.
Mol Cancer Ther ; 10(5): 770-83, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21388971

RESUMO

Inhibition of VEGFR-2 signaling reduces angiogenesis and retards tumor growth. Current biotherapeutics that inhibit VEGFR-2 signaling by either sequestering VEGF ligand or inhibiting VEGF binding to VEGFR-2 may be compromised by high VEGF concentrations. Here we describe a biotherapeutic that targets VEGFR-2 signaling by binding to Ig domains 4-7 of VEGFR-2 and therefore has the potential to work independently of ligand concentration. 33C3, a fully human VEGFR-2 antibody, was generated using XenoMouse technology. To elucidate the mechanism of action of 33C3, we have used a number of competition and binding assays. We show that 33C3 binds VEGFR-2 Ig domains 4-7, has no impact on VEGF-A binding to VEGFR-2, and does not compete with an antibody that interacts at the ligand binding site. 33C3 has a high affinity for VEGFR-2 (K(D) < 1 nmol/L) and inhibits VEGF-A induced phosphorylation of VEGFR-2 with an IC(50) of 99 ± 3 ng/mL. In vitro, in a 2D angiogenesis assay, 33C3 potently inhibits both tube length and number of branch points, and endothelial tubule formation in a 3D assay. In vivo, 33C3 is a very effective inhibitor of angiogenesis in both a human endothelial angiogenesis assay and in a human skin chimera model. These data show targeting VEGFR-2 outside of the ligand binding domain results in potent inhibition of VEGFR-2 signaling and inhibition of angiogenesis in vitro and in vivo.


Assuntos
Inibidores da Angiogênese/metabolismo , Anticorpos/metabolismo , Ligantes , Neovascularização Fisiológica/efeitos dos fármacos , Pele/irrigação sanguínea , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Inibidores da Angiogênese/farmacologia , Animais , Anticorpos/farmacologia , Especificidade de Anticorpos/imunologia , Linhagem Celular , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Humanos , Camundongos , Camundongos SCID , Ligação Proteica/efeitos dos fármacos , Estrutura Terciária de Proteína , Pele/efeitos dos fármacos , Suínos , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA