Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
New Phytol ; 235(5): 1900-1912, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35644901

RESUMO

The strigolactone (SL) class of phytohormones shows broad chemical diversity, the functional importance of which remains to be fully elucidated, along with the enzymes responsible for the diversification of the SL structure. Here we explore the functional evolution of the highly conserved CYP711A P450 family, members of which catalyze several key monooxygenation reactions in the strigolactone pathway. Ancestral sequence reconstruction was utilized to infer ancestral CYP711A sequences based on a comprehensive set of extant CYP711 sequences. Eleven ancestral enzymes, corresponding to key points in the CYP711A phylogenetic tree, were resurrected and their activity was characterized towards the native substrate carlactone and the pure enantiomers of the synthetic strigolactone analogue, GR24. The ancestral and extant CYP711As tested accepted GR24 as a substrate and catalyzed several diversifying oxidation reactions on the structure. Evidence was obtained for functional divergence in the CYP711A family. The monocot group 3 ancestor, arising from gene duplication events within monocot grasses, showed both increased catalytic activity towards GR24 and high stereoselectivity towards the GR24 isomer resembling strigol-type SLs. These results are consistent with a role for CYP711As in strigolactone diversification in early land plants, which may have extended to the diversification of strigol-type SLs.


Assuntos
Duplicação Gênica , Poaceae , Compostos Heterocíclicos com 3 Anéis , Lactonas/metabolismo , Filogenia , Reguladores de Crescimento de Plantas/metabolismo , Poaceae/genética , Poaceae/metabolismo
2.
BMC Biotechnol ; 21(1): 23, 2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-33722219

RESUMO

BACKGROUND: Ogataea polymorpha is a thermotolerant, methylotrophic yeast with significant industrial applications. While previously mainly used for protein synthesis, it also holds promise for producing platform chemicals. O. polymorpha has the distinct advantage of using methanol as a substrate, which could be potentially derived from carbon capture and utilization streams. Full development of the organism into a production strain and estimation of the metabolic capabilities require additional strain design, guided by metabolic modeling with a genome-scale metabolic model. However, to date, no genome-scale metabolic model is available for O. polymorpha. RESULTS: To overcome this limitation, we used a published reconstruction of the closely related yeast Komagataella phaffii as a reference and corrected reactions based on KEGG and MGOB annotation. Additionally, we conducted phenotype microarray experiments to test the suitability of 190 substrates as carbon sources. Over three-quarter of the substrate use was correctly reproduced by the model and 27 new substrates were added, that were not present in the K. phaffii reference model. CONCLUSION: The developed genome-scale metabolic model of O. polymorpha will support the engineering of synthetic metabolic capabilities and enable the optimization of production processes, thereby supporting a sustainable future methanol economy.


Assuntos
Genoma Fúngico , Metanol/metabolismo , Saccharomycetales/genética , Saccharomycetales/metabolismo , Processos Autotróficos , Fermentação , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Saccharomycetales/crescimento & desenvolvimento
3.
Metab Eng ; 62: 84-94, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32810591

RESUMO

Methyl ketones present a group of highly reduced platform chemicals industrially produced from petroleum-derived hydrocarbons. They find applications in the fragrance, flavor, pharmacological, and agrochemical industries, and are further discussed as biodiesel blends. In recent years, intense research has been carried out to achieve sustainable production of these molecules by re-arranging the fatty acid metabolism of various microbes. One challenge in the development of a highly productive microbe is the high demand for reducing power. Here, we engineered Pseudomonas taiwanensis VLB120 for methyl ketone production as this microbe has been shown to sustain exceptionally high NAD(P)H regeneration rates. The implementation of published strategies resulted in 2.1 g Laq-1 methyl ketones in fed-batch fermentation. We further increased the production by eliminating competing reactions suggested by metabolic analyses. These efforts resulted in the production of 9.8 g Laq-1 methyl ketones (corresponding to 69.3 g Lorg-1 in the in situ extraction phase) at 53% of the maximum theoretical yield. This represents a 4-fold improvement in product titer compared to the initial production strain and the highest titer of recombinantly produced methyl ketones reported to date. Accordingly, this study underlines the high potential of P. taiwanensis VLB120 to produce methyl ketones and emphasizes model-driven metabolic engineering to rationalize and accelerate strain optimization efforts.


Assuntos
Engenharia Metabólica , Pseudomonas , Acetona , Fermentação , Pseudomonas/genética
4.
Appl Environ Microbiol ; 86(11)2020 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-32245760

RESUMO

Obligate aerobic organisms rely on a functional electron transport chain for energy conservation and NADH oxidation. Because of this essential requirement, the genes of this pathway are likely constitutively and highly expressed to avoid a cofactor imbalance and energy shortage under fluctuating environmental conditions. We here investigated the essentiality of the three NADH dehydrogenases of the respiratory chain of the obligate aerobe Pseudomonas taiwanensis VLB120 and the impact of the knockouts of corresponding genes on its physiology and metabolism. While a mutant lacking all three NADH dehydrogenases seemed to be nonviable, the single or double knockout mutant strains displayed no, or only a weak, phenotype. Only the mutant deficient in both type 2 dehydrogenases showed a clear phenotype with biphasic growth behavior and a strongly reduced growth rate in the second phase. In-depth analyses of the metabolism of the generated mutants, including quantitative physiological experiments, transcript analysis, proteomics, and enzyme activity assays revealed distinct responses to type 2 and type 1 dehydrogenase deletions. An overall high metabolic flexibility enables P. taiwanensis to cope with the introduced genetic perturbations and maintain stable phenotypes, likely by rerouting of metabolic fluxes. This metabolic adaptability has implications for biotechnological applications. While the phenotypic robustness is favorable in large-scale applications with inhomogeneous conditions, the possible versatile redirecting of carbon fluxes upon genetic interventions can thwart metabolic engineering efforts.IMPORTANCE While Pseudomonas has the capability for high metabolic activity and the provision of reduced redox cofactors important for biocatalytic applications, exploitation of this characteristic might be hindered by high, constitutive activity of and, consequently, competition with the NADH dehydrogenases of the respiratory chain. The in-depth analysis of NADH dehydrogenase mutants of Pseudomonas taiwanensis VLB120 presented here provides insight into the phenotypic and metabolic response of this strain to these redox metabolism perturbations. This high degree of metabolic flexibility needs to be taken into account for rational engineering of this promising biotechnological workhorse toward a host with a controlled and efficient supply of redox cofactors for product synthesis.


Assuntos
Proteínas de Bactérias/genética , Mutação , NADH Desidrogenase/genética , Pseudomonas/fisiologia , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , NADH Desidrogenase/metabolismo , Oxirredução , Pseudomonas/genética , Análise de Sistemas
5.
BMC Bioinformatics ; 20(1): 447, 2019 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-31462231

RESUMO

BACKGROUND: Metabolic coupling of product synthesis and microbial growth is a prominent approach for maximizing production performance. Growth-coupling (GC) also helps stabilizing target production and allows the selection of superior production strains by adaptive laboratory evolution. To support the implementation of growth-coupling strain designs, we seek to identify biologically relevant, metabolic principles that enforce strong growth-coupling on the basis of reaction knockouts. RESULTS: We adapted an established bilevel programming framework to maximize the minimally guaranteed production rate at a fixed, medium growth rate. Using this revised formulation, we identified various GC intervention strategies for metabolites of the central carbon metabolism, which were examined for GC generating principles under diverse conditions. Curtailing the metabolism to render product formation an essential carbon drain was identified as one major strategy generating strong coupling of metabolic activity and target synthesis. Impeding the balancing of cofactors and protons in the absence of target production was the underlying principle of all other strategies and further increased the GC strength of the aforementioned strategies. CONCLUSION: Maximizing the minimally guaranteed production rate at a medium growth rate is an attractive principle for the identification of strain designs that couple growth to target metabolite production. Moreover, it allows for controlling the inevitable compromise between growth coupling strength and the retaining of microbial viability. With regard to the corresponding metabolic principles, generating a dependency between the supply of global metabolic cofactors and product synthesis appears to be advantageous in enforcing strong GC for any metabolite. Deriving such strategies manually, is a hard task, due to which we suggest incorporating computational metabolic network analyses in metabolic engineering projects seeking to determine GC strain designs.


Assuntos
Escherichia coli/crescimento & desenvolvimento , Genoma Bacteriano , Engenharia Metabólica , Redes e Vias Metabólicas , Modelos Biológicos , Simulação por Computador , Escherichia coli/genética , Escherichia coli/metabolismo
6.
BMC Microbiol ; 19(1): 100, 2019 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-31101012

RESUMO

BACKGROUND: Thermotolerance is a highly desirable trait of microbial cell factories and has been the focus of extensive research. Yeast usually tolerate only a narrow temperature range and just two species, Kluyveromyces marxianus and Ogataea polymorpha have been described to grow at reasonable rates above 40 °C. However, the complex mechanisms of thermotolerance in yeast impede its full comprehension and the rare physiological data at elevated temperatures has so far not been matched with corresponding metabolic analyses. RESULTS: To elaborate on the metabolic network response to increased fermentation temperatures of up to 49 °C, comprehensive physiological datasets of several Kluyveromyces and Ogataea strains were generated and used for 13C-metabolic flux analyses. While the maximum growth temperature was very similar in all investigated strains, the metabolic network response to elevated temperatures was not conserved among the different species. In fact, metabolic flux distributions were remarkably irresponsive to increasing temperatures in O. polymorpha, while the K. marxianus strains exhibited extensive flux rerouting at elevated temperatures. CONCLUSIONS: While a clear mechanism of thermotolerance is not deducible from the fluxome level alone, the generated data can be valued as a knowledge repository for using temperature to modulate the metabolic activity towards engineering goals.


Assuntos
Temperatura Alta , Redes e Vias Metabólicas , Termotolerância , Leveduras/fisiologia , Fermentação , Kluyveromyces/fisiologia , Pichia/fisiologia , Saccharomyces cerevisiae/fisiologia , Leveduras/classificação
7.
Curr Genet ; 64(4): 959-964, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29279954

RESUMO

Volatile organic compounds (VOCs) are small molecular mass substances, which exhibit low boiling points and high-vapour pressures. They are ubiquitous in nature and produced by almost any organism of all kingdoms of life. VOCs are involved in many inter- and intraspecies interactions ranging from antimicrobial or fungal effects to plant growth promotion and human taste perception of fermentation products. VOC profiles further reflect the metabolic or phenotypic state of the living organism that produces them. Hence, they can be exploited for non-invasive medicinal diagnoses or industrial fermentation control. Here, we introduce the reader to these diverse applications associated with the monitoring and analysis of VOC emissions. We also present our vision of real-time VOC analysis enabled by newly developed analytical techniques, which will further broaden the use of VOCs in even wider applications. Hence, we foresee a bright future for VOC research and its associated fields of applications.


Assuntos
Anti-Infecciosos/metabolismo , Compostos Orgânicos Voláteis/metabolismo , Anti-Infecciosos/química , Anti-Infecciosos/uso terapêutico , Fermentação , Humanos , Desenvolvimento Vegetal/efeitos dos fármacos , Plantas/genética , Percepção Gustatória/genética , Compostos Orgânicos Voláteis/química , Compostos Orgânicos Voláteis/isolamento & purificação , Compostos Orgânicos Voláteis/uso terapêutico
8.
FEMS Yeast Res ; 18(8)2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30053028

RESUMO

Heterologous synthesis of triterpenoids in Saccharomyces cerevisiae from its native metabolite squalene has been reported to offer an alternative to chemical synthesis and extraction from plant material if productivities can be increased.Here, we physiologically characterized a squalene overproducing S. cerevisiae CEN.PK strain to elucidate the effect of cultivation conditions on the production of this central triterpenoid precursor. The maximum achievable squalene concentration was substantially influenced by nutritional conditions, medium composition and cultivation mode. Batch growth on glucose resulted in minimal squalene accumulation, while squalene only significantly accumulated during ethanol consumption (up to 59 mg/gCDW), probably due to increased acetyl-CoA supply on this carbon source. Likewise, low squalene concentrations were observed in glucose-limited chemostat cultivations and improved up to 8-fold upon increasing the ethanol fraction in the feed. In those experiments, a constant, growth-rate-independent specific squalene accumulation rate (2.2 mg/gCDW/h) was recorded resulting in a maximal squalene loading of 30 mg/gCDW at low dilution rates with longer residence times. Coenzyme A availability was identified as possible bottleneck as increased vitamin concentrations, including the Coenzyme A precursor pantothenate, improved squalene titers in batch and chemostat cultivations. This analysis demonstrates that thorough physiologic characterization of production strains is valuable for the identification of bottlenecks already in early stages of strain development and for guiding further optimization efforts.


Assuntos
Meios de Cultura/química , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo , Esqualeno/metabolismo , Coenzima A/metabolismo , Etanol/metabolismo , Glucose/metabolismo , Ácido Pantotênico/metabolismo
9.
Biotechnol Bioeng ; 114(11): 2528-2538, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28688186

RESUMO

Microbial production of plant derived, biologically active compounds has the potential to provide economic and ecologic alternatives to existing low productive, plant-based processes. Current production of the pharmacologically active cyclic triterpenoid betulinic acid is realized by extraction from the bark of plane tree or birch. Here, we reengineered the reported betulinic acid pathway into Saccharomyces cerevisiae and used this novel strain to develop efficient fermentation and product purification methods. Fed-batch cultivations with ethanol excess, using either an ethanol-pulse feed or controlling a constant ethanol concentration in the fermentation medium, significantly enhanced production of betulinic acid and its triterpenoid precursors. The beneficial effect of excess ethanol was further exploited in nitrogen-limited resting cell fermentations, yielding betulinic acid concentrations of 182 mg/L, and total triterpenoid concentrations of 854 mg/L, the highest concentrations reported so far. Purification of lupane-type triterpenoids with high selectivity and yield was achieved by solid-liquid extraction without prior cell disruption using polar aprotic solvents such as acetone or ethyl acetate and subsequent precipitation with strong acids. This study highlights the potential of microbial production of plant derived triterpenoids in S. cerevisiae by combining metabolic and process engineering.


Assuntos
Técnicas de Cultura Celular por Lotes/métodos , Etanol/metabolismo , Engenharia Metabólica/métodos , Saccharomyces cerevisiae/fisiologia , Triterpenos/isolamento & purificação , Triterpenos/metabolismo , Reatores Biológicos/microbiologia , Fermentação/fisiologia , Redes e Vias Metabólicas/genética , Triterpenos Pentacíclicos , Saccharomyces cerevisiae/citologia , Ácido Betulínico
10.
BMC Biotechnol ; 16: 20, 2016 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-26897180

RESUMO

BACKGROUND: Copper is an essential chemical element for life as it is a part of prosthetic groups of enzymes including super oxide dismutase and cytochrome c oxidase; however, it is also toxic at high concentrations. Here, we present the trade-off of copper availability and growth inhibition of a common host used for copper-dependent protein production, Pichia pastoris. RESULTS: At copper concentrations ranging from 0.1 mM (6.35 mg/L) to 2 mM (127 mg/L), growth rates of 0.25 h(-1) to 0.16 h(-1) were observed with copper uptake of as high as 20 mgcopper/gCDW. The intracellular copper content was estimated by subtracting the copper adsorbed on the cell wall from the total copper concentration in the biomass. Higher copper concentrations led to stronger cell growth retardation and, at 10 mM (635 mg/L) and above, to growth inhibition. To test the determined copper concentration range for optimal recombinant protein production, a laccase gene from Aspergillus clavatus [EMBL: EAW07265.1] was cloned under the control of the constitutive glyceraldehyde-3-phosphate (GAP) dehydrogenase promoter for expression in P. pastoris. Notably, in the presence of copper, laccase expression improved the specific growth rate of P. pastoris. Although copper concentrations of 0.1 mM and 0.2 mM augmented laccase expression 4 times up to 3 U/mL compared to the control (0.75 U/mL), while higher copper concentrations resulted in reduced laccase production. An intracellular copper content between 1 and 2 mgcopper/gCDW was sufficient for increased laccase activity. The physiology of the yeast could be excluded as a reason for the stop of laccase production at moderate copper concentrations as no flux redistribution could be observed by (13)C-metabolic flux analysis. CONCLUSION: Copper and its pivotal role to sustain cellular functions is noteworthy. However, knowledge on its cellular accumulation, availability and distribution for recombinant protein production is limited. This study attempts to address one such challenge, which revealed the fact that intracellular copper accumulation influenced laccase production and should be considered for high protein expression of copper-dependent enzymes when using P. pastoris. The results are discussed in the context of P. pastoris as a general host for copper -dependent enzyme production.


Assuntos
Cobre/metabolismo , Cobre/farmacologia , Proteínas Fúngicas/metabolismo , Pichia/efeitos dos fármacos , Pichia/metabolismo , Proteínas Fúngicas/análise , Proteínas Fúngicas/química , Lacase/análise , Lacase/química , Lacase/metabolismo , Análise do Fluxo Metabólico , Pichia/enzimologia , Pichia/genética , Proteínas Recombinantes/análise , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo
11.
Microb Cell Fact ; 15: 53, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26980206

RESUMO

BACKGROUND: In the future, oil- and gas-derived polymers may be replaced with bio-based polymers, produced from renewable feedstocks using engineered cell factories. Acrylic acid and acrylic esters with an estimated world annual production of approximately 6 million tons by 2017 can be derived from 3-hydroxypropionic acid (3HP), which can be produced by microbial fermentation. For an economically viable process 3HP must be produced at high titer, rate and yield and preferably at low pH to minimize downstream processing costs. RESULTS: Here we describe the metabolic engineering of baker's yeast Saccharomyces cerevisiae for biosynthesis of 3HP via a malonyl-CoA reductase (MCR)-dependent pathway. Integration of multiple copies of MCR from Chloroflexus aurantiacus and of phosphorylation-deficient acetyl-CoA carboxylase ACC1 genes into the genome of yeast increased 3HP titer fivefold in comparison with single integration. Furthermore we optimized the supply of acetyl-CoA by overexpressing native pyruvate decarboxylase PDC1, aldehyde dehydrogenase ALD6, and acetyl-CoA synthase from Salmonella enterica SEacs (L641P). Finally we engineered the cofactor specificity of the glyceraldehyde-3-phosphate dehydrogenase to increase the intracellular production of NADPH at the expense of NADH and thus improve 3HP production and reduce formation of glycerol as by-product. The final strain produced 9.8 ± 0.4 g L(-1) 3HP with a yield of 13% C-mol C-mol(-1) glucose after 100 h in carbon-limited fed-batch cultivation at pH 5. The 3HP-producing strain was characterized by (13)C metabolic flux analysis and by transcriptome analysis, which revealed some unexpected consequences of the undertaken metabolic engineering strategy, and based on this data, future metabolic engineering directions are proposed. CONCLUSIONS: In this study, S. cerevisiae was engineered for high-level production of 3HP by increasing the copy numbers of biosynthetic genes and improving flux towards precursors and redox cofactors. This strain represents a good platform for further optimization of 3HP production and hence an important step towards potential commercial bio-based production of 3HP.


Assuntos
Ácido Láctico/análogos & derivados , Engenharia Metabólica/métodos , Oxirredutases/metabolismo , Saccharomyces cerevisiae , Chloroflexus/enzimologia , Chloroflexus/genética , Regulação Fúngica da Expressão Gênica , Ácido Láctico/biossíntese , Redes e Vias Metabólicas , Organismos Geneticamente Modificados , Oxirredução , Oxirredutases/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Salmonella enterica/enzimologia , Salmonella enterica/genética
12.
Microb Biotechnol ; 17(1): e14309, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37537795

RESUMO

As one of the main precursors, acetyl-CoA leads to the predominant production of even-chain products. From an industrial biotechnology perspective, extending the acyl-CoA portfolio of a cell factory is vital to producing industrial relevant odd-chain alcohols, acids, ketones and polyketides. The bioproduction of odd-chain molecules can be facilitated by incorporating propionyl-CoA into the metabolic network. The shortest pathway for propionyl-CoA production, which relies on succinyl-CoA catabolism encoded by the sleeping beauty mutase operon, was evaluated in Pseudomonas taiwanensis VLB120. A single genomic copy of the sleeping beauty mutase genes scpA, argK and scpB combined with the deletion of the methylcitrate synthase PVLB_08385 was sufficient to observe propionyl-CoA accumulation in this Pseudomonas. The chassis' capability for odd-chain product synthesis was assessed by expressing an acyl-CoA hydrolase, which enabled propionate synthesis. Three fed-batch strategies during bioreactor fermentations were benchmarked for propionate production, in which a maximal propionate titre of 2.8 g L-1 was achieved. Considering that the fermentations were carried out in mineral salt medium under aerobic conditions and that a single genome copy drove propionyl-CoA production, this result highlights the potential of Pseudomonas to produce propionyl-CoA derived, odd-chain products.


Assuntos
Transferases Intramoleculares , Propionatos , Propionatos/metabolismo , Acil Coenzima A/metabolismo , Pseudomonas/genética , Pseudomonas/metabolismo , Minerais
13.
Nat Commun ; 15(1): 2666, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38531855

RESUMO

To broaden the substrate scope of microbial cell factories towards renewable substrates, rational genetic interventions are often combined with adaptive laboratory evolution (ALE). However, comprehensive studies enabling a holistic understanding of adaptation processes primed by rational metabolic engineering remain scarce. The industrial workhorse Pseudomonas putida was engineered to utilize the non-native sugar D-xylose, but its assimilation into the bacterial biochemical network via the exogenous xylose isomerase pathway remained unresolved. Here, we elucidate the xylose metabolism and establish a foundation for further engineering followed by ALE. First, native glycolysis is derepressed by deleting the local transcriptional regulator gene hexR. We then enhance the pentose phosphate pathway by implanting exogenous transketolase and transaldolase into two lag-shortened strains and allow ALE to finetune the rewired metabolism. Subsequent multilevel analysis and reverse engineering provide detailed insights into the parallel paths of bacterial adaptation to the non-native carbon source, highlighting the enhanced expression of transaldolase and xylose isomerase along with derepressed glycolysis as key events during the process.


Assuntos
Pseudomonas putida , Xilose , Xilose/metabolismo , Pseudomonas putida/genética , Transaldolase/genética , Engenharia Metabólica , Via de Pentose Fosfato
14.
Microorganisms ; 11(2)2023 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-36838420

RESUMO

Cyanobacteria are photosynthetic microorganisms capable of using solar energy to convert CO2 and H2O into O2 and energy-rich organic compounds, thus enabling sustainable production of a wide range of bio-products. More and more strains of cyanobacteria are identified that show great promise as cell platforms for the generation of bioproducts. However, strain development is still required to optimize their biosynthesis and increase titers for industrial applications. This review describes the most well-known, newest and most promising strains available to the community and gives an overview of current cyanobacterial biotechnology and the latest innovative strategies used for engineering cyanobacteria. We summarize advanced synthetic biology tools for modulating gene expression and their use in metabolic pathway engineering to increase the production of value-added compounds, such as terpenoids, fatty acids and sugars, to provide a go-to source for scientists starting research in cyanobacterial metabolic engineering.

15.
Front Bioeng Biotechnol ; 11: 1106566, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36926686

RESUMO

Introduction: Bioproduction of plant-derived triterpenoids in recombinant microbes is receiving great attention to make these biologically active compounds industrially accessible as nutraceuticals, pharmaceutics, and cosmetic ingredients. So far, there is no direct method for detecting triterpenoids under physiological conditions on a cellular level, information yet highly relevant to rationalizing microbial engineering. Methods: Here, we show in a proof-of-concept study, that triterpenoids can be detected and monitored in living yeast cells by combining coherent anti-Stokes Raman scattering (CARS) and second-harmonic-generation (SHG) microscopy techniques. We applied CARS and SHG microscopy measurements, and for comparison classical Nile Red staining, on immobilized and growing triterpenoid-producing, and non-producing reference Saccharomyces cerevisiae strains. Results and Discussion: We found that the SHG signal in triterpenoid-producing strains is significantly higher than in a non-producing reference strain, correlating with lipophile content as determined by Nile red staining. In growing cultures, both CARS and SHG signals showed changes over time, enabling new insights into the dynamics of triterpenoid production and storage inside cells.

16.
ACS Synth Biol ; 12(7): 2029-2040, 2023 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-37341594

RESUMO

The potential of nonmodel organisms for industrial biotechnology is increasingly becoming evident since advances in systems and synthetic biology have made it possible to explore their unique traits. However, the lack of adequately characterized genetic elements that drive gene expression impedes benchmarking nonmodel with model organisms. Promoters are one of the genetic elements that contribute significantly to gene expression, but information about their performance in different organisms is limited. This work addresses this bottleneck by characterizing libraries of synthetic σ70-dependent promoters controlling the expression of msfGFP, a monomeric, superfolder green fluorescent protein, in both Escherichia coli TOP10 and Pseudomonas taiwanensis VLB120, a less explored microbe with industrially attractive attributes. We adopted a standardized method for comparing gene promoter strength across species and laboratories. Our approach uses fluorescein calibration and adjusts for cell growth variation, enabling accurate cross-species comparisons. The quantitative description of promoter strength is a valuable expansion of P. taiwanensis VLB120's genetic toolbox, while the comparison with the performance in E. coli facilitates the evaluation of P. taiwanensis VLB120's potential as a chassis for biotechnology applications.


Assuntos
Proteínas de Bactérias , Escherichia coli , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Bactérias/genética , Regiões Promotoras Genéticas/genética , Biblioteca Gênica , Biologia Sintética
17.
Front Bioeng Biotechnol ; 10: 876316, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35620471

RESUMO

The yeast Ogataea polymorpha is an upcoming host for bio-manufacturing due to its unique physiological properties, including its broad substrate spectrum, and particularly its ability to utilize methanol as the sole carbon and energy source. However, metabolic engineering tools for O. polymorpha are still rare. In this study we characterized the influence of 6 promoters and 15 terminators on gene expression throughout batch cultivations with glucose, glycerol, and methanol as carbon sources as well as mixes of these carbon sources. For this characterization, a short half-life Green Fluorescent Protein (GFP) variant was chosen, which allows a precise temporal resolution of gene expression. Our promoter studies revealed how different promoters do not only influence the expression strength but also the timepoint of maximal expression. For example, the expression strength of the catalase promoter (pCAT) and the methanol oxidase promoter (pMOX) are comparable on methanol, but the maximum expression level of the pCAT is reached more than 24 h earlier. By varying the terminators, a 6-fold difference in gene expression was achieved with the MOX terminator boosting gene expression on all carbon sources by around 50% compared to the second-strongest terminator. It was shown that this exceptional increase in gene expression is achieved by the MOX terminator stabilizing the mRNA, which results in an increased transcript level in the cells. We further found that different pairing of promoters and terminators or the expression of a different gene (ß-galactosidase gene) did not influence the performance of the genetic parts. Consequently, it is possible to mix and match promoters and terminators as independent elements to tune gene expression in O. polymorpha.

18.
Methods Mol Biol ; 2469: 239-259, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35508844

RESUMO

Isoprenoids, also known as terpenes or terpenoids, are compounds made of one or more isoprene (C5H8) moieties and constitute the largest class of natural products. They play diverse roles in biology and have broad industrial uses as flavors, fragrances, biofuels, polymers, agricultural chemicals, and medicines. Most isoprenoids are secondary plant metabolites and only produced in very low amounts. To make these valuable compounds economically accessible, significant efforts in the culture and engineering of microbial cells for isoprenoid biosynthesis have been made in the last decades. The protocols presented here describe lab-scale cultivation of microbes, either naturally producing or engineered, for isoprenoid production, the extraction of products and their quantification by high-performance liquid chromatography. Examples of isoprenoids covered in this chapter include (C10) mono-, (C15) sesqui-, (C20) di-, (C30) tri-, and (C40) tetraterpenoids. We focus on yeast and cyanobacteria as production systems, but the protocols can be adapted for other organisms.


Assuntos
Engenharia Metabólica , Terpenos , Biocombustíveis , Engenharia Metabólica/métodos , Plantas/metabolismo , Saccharomyces cerevisiae/genética , Terpenos/química
19.
ACS Synth Biol ; 11(8): 2685-2696, 2022 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-35921601

RESUMO

Triterpenoids are a subgroup of terpenoids and have wide applications in the food, cosmetics, and pharmaceutical industries. The heterologous production of various triterpenoids in Saccharomyces cerevisiae, as well as other microbes, has been successfully implemented as these production hosts not only produce the precursor of triterpenoids 2,3-oxidosqualene by the mevalonate pathway but also allow simple expression of plant membrane-anchored enzymes. Nevertheless, 2,3-oxidosqualene is natively converted to lanosterol catalyzed by the endogenous lanosterol synthase (Erg7p), causing low production of recombinant triterpenoids. While simple deletion of ERG7 was not effective, in this study, the critical amino acid residues of Erg7p were engineered to lower this critical enzyme activity. The engineered S. cerevisiae indeed accumulated 2,3-oxidosqualene up to 180 mg/L. Engineering triterpenoid synthesis into the ERG7-modified strain resulted in 7.3- and 3-fold increases in the titers of dammarane-type and lupane-type triterpenoids, respectively. This study presents an efficient inducer-free strategy for lowering Erg7p activity, thereby providing 2,3-oxidosqualene for the enhanced production of various triterpenoids.


Assuntos
Transferases Intramoleculares , Triterpenos , Aminoácidos/metabolismo , Transferases Intramoleculares/genética , Transferases Intramoleculares/metabolismo , Engenharia Metabólica , Saccharomyces cerevisiae/metabolismo , Triterpenos/metabolismo
20.
FEBS J ; 289(21): 6672-6693, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35704353

RESUMO

Cyanobacteria are photosynthetic prokaryotes with strong potential to be used for industrial terpenoid production. However, the key enzymes forming the principal terpenoid building blocks, called short-chain prenyltransferases (SPTs), are insufficiently characterized. Here, we examined SPTs in the model cyanobacteria Synechococcus elongatus sp. PCC 7942 and Synechocystis sp. PCC 6803. Each species has a single putative SPT (SeCrtE and SyCrtE, respectively). Sequence analysis identified these as type-II geranylgeranyl pyrophosphate synthases (GGPPSs) with high homology to GGPPSs found in the plastids of green plants and other photosynthetic organisms. In vitro analysis demonstrated that SyCrtE is multifunctional, producing geranylgeranyl pyrophosphate (GGPP; C20 ) primarily but also significant amounts of farnesyl pyrophosphate (FPP, C15 ) and geranyl pyrophosphate (GPP, C10 ); whereas SeCrtE appears to produce only GGPP. The crystal structures were solved to 2.02 and 1.37 Å, respectively, and the superposition of the structures against the GGPPS of Synechococcus elongatus sp. PCC 7002 yield a root mean square deviation of 0.8 Å (SeCrtE) and 1.1 Å (SyCrtE). We also discovered that SeCrtE is co-encoded in an operon with a functional GGPP phosphatase, suggesting metabolic pairing of these two activities and a putative function in tocopherol biosynthesis. This work sheds light on the activity of SPTs and terpenoid synthesis in cyanobacteria. Understanding native prenyl phosphate metabolism is an important step in developing approaches to engineering the production of different chain-length terpenoids in cyanobacteria.


Assuntos
Dimetilaliltranstransferase , Synechococcus , Dimetilaliltranstransferase/genética , Dimetilaliltranstransferase/metabolismo , Monoéster Fosfórico Hidrolases , Geranil-Geranildifosfato Geranil-Geraniltransferase/metabolismo , Synechococcus/genética , Synechococcus/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA