Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
mSphere ; 1(5)2016.
Artigo em Inglês | MEDLINE | ID: mdl-27642637

RESUMO

Pseudomonas aeruginosa, Acinetobacter baumannii, and Staphylococcus aureus are commonly associated with biofilm-associated wound infections that are recalcitrant to conventional antibiotics. As an initial means to identify agents that may have a greater propensity to improve clearance of wound-associated bacterial pathogens, we screened a Food and Drug Administration-approved drug library for members that display bactericidal activity toward 72-h-established P. aeruginosa biofilms using an adenylate kinase reporter assay for bacterial cell death. A total of 34 compounds displayed antibiofilm activity. Among these, zinc pyrithione was also shown to reduce levels of A. baumannii and S. aureus biofilm-associated bacteria and exhibited an additive effect in combination with silver sulfadiazine, a leading topical therapeutic for wound site infections. The improved antimicrobial activity of zinc pyrithione and silver sulfadiazine was maintained in an ointment formulation and led to improved clearance of P. aeruginosa, A. baumannii, and S. aureus in a murine model of wound infection. Taken together, these results suggest that topical zinc pyrithione and silver sulfadiazine combination formulations may mitigate wound-associated bacterial infections and disease progression. IMPORTANCE Topical antimicrobial ointments ostensibly mitigate bacterial wound disease and reliance on systemic antibiotics. Yet studies have called into question the therapeutic benefits of several traditional topical antibacterials, accentuating the need for improved next-generation antimicrobial ointments. Yet the development of such agents consisting of a new chemical entity is a time-consuming and expensive proposition. Considering that drug combinations are a mainstay therapeutic strategy for the treatment of other therapeutic indications, one alternative approach is to improve the performance of conventional antimicrobial ointments by the addition of a well-characterized and FDA-approved agent. Here we report data that indicate that the antimicrobial properties of silver sulfadiazine ointments can be significantly improved by the addition of the antifungal zinc pyrithione, suggesting that such combinations may provide an improved therapeutic option for the topical treatment of wound infections.

2.
PLoS One ; 10(6): e0129234, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26098625

RESUMO

Mycobacterium tuberculosis (Mtb) is well-established to be one of the most important bacterial pathogens for which new antimicrobial therapies are needed. Herein, we describe the development of a high throughput screening assay for the identification of molecules that are bactericidal against Mycobacteria. The assay utilizes the release of the intracellular enzyme adenylate kinase into the culture medium as a reporter of mycobacterial cell death. We demonstrate that the assay is selective for mycobactericidal molecules and detects anti-mycobacterial activity at concentrations below the minimum inhibitory concentration of many molecules. Thus, the AK assay is more sensitive than traditional growth assays. We have validated the AK assay in the HTS setting using the Mtb surrogate organism M. smegmatis and libraries of FDA approved drugs as well as a commercially available Diversity set. The screen of the FDA-approved library demonstrated that the AK assay is able to identify the vast majority of drugs with known mycobactericidal activity. Importantly, our screen of the Diversity set revealed that the increased sensitivity of the AK assay increases the ability of M. smegmatis-based screens to detect molecules with relatively poor activity against M. smegmatis but good to excellent activity against Mtb.


Assuntos
Adenilil Ciclases/química , Antituberculosos/farmacologia , Descoberta de Drogas/métodos , Ensaios de Triagem em Larga Escala/métodos , Mycobacterium/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/farmacologia , Adenilil Ciclases/metabolismo , Antituberculosos/química , Bibliotecas de Moléculas Pequenas/química
3.
J Med Chem ; 57(20): 8540-62, 2014 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-25238555

RESUMO

Staphylococcus aureus is a rapidly growing health threat in the U.S., with resistance to several commonly prescribed treatments. A high-throughput screen identified the antihistamine terfenadine to possess, previously unreported, antimicrobial activity against S. aureus and other Gram-positive bacteria. In an effort to repurpose this drug, structure-activity relationship studies yielded 84 terfenadine-based analogues with several modifications providing increased activity versus S. aureus and other bacterial pathogens, including Mycobacterium tuberculosis. Mechanism of action studies revealed these compounds to exert their antibacterial effects, at least in part, through inhibition of the bacterial type II topoisomerases. This scaffold suffers from hERG liabilities which were not remedied through this round of optimization; however, given the overall improvement in activity of the set, terfenadine-based analogues provide a novel structural class of antimicrobial compounds with potential for further characterization as part of the continuing process to meet the current need for new antibiotics.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Terfenadina/química , Antibacterianos/síntese química , Técnicas de Química Sintética , DNA Girase/química , DNA Girase/metabolismo , DNA Topoisomerase IV/antagonistas & inibidores , Relação Dose-Resposta a Droga , Canal de Potássio ERG1 , Canais de Potássio Éter-A-Go-Go/antagonistas & inibidores , Antagonistas não Sedativos dos Receptores H1 da Histamina/química , Humanos , Concentração Inibidora 50 , Testes de Sensibilidade Microbiana , Modelos Moleculares , Staphylococcus aureus/enzimologia , Relação Estrutura-Atividade , Terfenadina/análogos & derivados , Inibidores da Topoisomerase II/química , Inibidores da Topoisomerase II/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA