Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Proc Natl Acad Sci U S A ; 118(37)2021 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-34504011

RESUMO

The tropical conservatism hypothesis (TCH) posits that the latitudinal gradient in biological diversity arises because most extant clades of animals and plants originated when tropical environments were more widespread and because the colonization of colder and more seasonal temperate environments is limited by the phylogenetically conserved environmental tolerances of these tropical clades. Recent studies have claimed support of the TCH, indicating that temperate plant diversity stems from a few more recently derived lineages that are nested within tropical clades, with the colonization of the temperate zone being associated with key adaptations to survive colder temperatures and regular freezing. Drought, however, is an additional physiological stress that could shape diversity gradients. Here, we evaluate patterns of evolutionary diversity in plant assemblages spanning the full extent of climatic gradients in North and South America. We find that in both hemispheres, extratropical dry biomes house the lowest evolutionary diversity, while tropical moist forests and many temperate mixed forests harbor the highest. Together, our results support a more nuanced view of the TCH, with environments that are radically different from the ancestral niche of angiosperms having limited, phylogenetically clustered diversity relative to environments that show lower levels of deviation from this niche. Thus, we argue that ongoing expansion of arid environments is likely to entail higher loss of evolutionary diversity not just in the wet tropics but in many extratropical moist regions as well.


Assuntos
Adaptação Fisiológica , Biodiversidade , Evolução Biológica , Mudança Climática , Magnoliopsida/fisiologia , Filogeografia , Florestas , Filogenia
2.
Lancet ; 397(10272): 398-408, 2021 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-33516338

RESUMO

BACKGROUND: The past two decades have seen expansion of childhood vaccination programmes in low-income and middle-income countries (LMICs). We quantify the health impact of these programmes by estimating the deaths and disability-adjusted life-years (DALYs) averted by vaccination against ten pathogens in 98 LMICs between 2000 and 2030. METHODS: 16 independent research groups provided model-based disease burden estimates under a range of vaccination coverage scenarios for ten pathogens: hepatitis B virus, Haemophilus influenzae type B, human papillomavirus, Japanese encephalitis, measles, Neisseria meningitidis serogroup A, Streptococcus pneumoniae, rotavirus, rubella, and yellow fever. Using standardised demographic data and vaccine coverage, the impact of vaccination programmes was determined by comparing model estimates from a no-vaccination counterfactual scenario with those from a reported and projected vaccination scenario. We present deaths and DALYs averted between 2000 and 2030 by calendar year and by annual birth cohort. FINDINGS: We estimate that vaccination of the ten selected pathogens will have averted 69 million (95% credible interval 52-88) deaths between 2000 and 2030, of which 37 million (30-48) were averted between 2000 and 2019. From 2000 to 2019, this represents a 45% (36-58) reduction in deaths compared with the counterfactual scenario of no vaccination. Most of this impact is concentrated in a reduction in mortality among children younger than 5 years (57% reduction [52-66]), most notably from measles. Over the lifetime of birth cohorts born between 2000 and 2030, we predict that 120 million (93-150) deaths will be averted by vaccination, of which 58 million (39-76) are due to measles vaccination and 38 million (25-52) are due to hepatitis B vaccination. We estimate that increases in vaccine coverage and introductions of additional vaccines will result in a 72% (59-81) reduction in lifetime mortality in the 2019 birth cohort. INTERPRETATION: Increases in vaccine coverage and the introduction of new vaccines into LMICs have had a major impact in reducing mortality. These public health gains are predicted to increase in coming decades if progress in increasing coverage is sustained. FUNDING: Gavi, the Vaccine Alliance and the Bill & Melinda Gates Foundation.


Assuntos
Controle de Doenças Transmissíveis , Doenças Transmissíveis/mortalidade , Doenças Transmissíveis/virologia , Modelos Teóricos , Mortalidade/tendências , Anos de Vida Ajustados por Qualidade de Vida , Vacinação , Pré-Escolar , Controle de Doenças Transmissíveis/economia , Controle de Doenças Transmissíveis/estatística & dados numéricos , Doenças Transmissíveis/economia , Análise Custo-Benefício , Países em Desenvolvimento , Feminino , Saúde Global , Humanos , Programas de Imunização , Masculino , Vacinação/economia , Vacinação/estatística & dados numéricos
3.
Int J Equity Health ; 21(1): 82, 2022 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-35701823

RESUMO

BACKGROUND: Evidence to date has shown that inequality in health, and vaccination coverage in particular, can have ramifications to wider society. However, whilst individual studies have sought to characterise these heterogeneities in immunisation coverage at national level, few have taken a broad and quantitative view of the contributing factors to heterogeneity in immunisation coverage and impact, i.e. the number of cases, deaths, and disability-adjusted life years averted. This systematic review aims to highlight these geographic, demographic, and sociodemographic characteristics through a qualitative and quantitative approach, vital to prioritise and optimise vaccination policies. METHODS: A systematic review of two databases (PubMed and Web of Science) was undertaken using search terms and keywords to identify studies examining factors on immunisation inequality and heterogeneity in vaccination coverage. Inclusion criteria were applied independently by two researchers. Studies including data on key characteristics of interest were further analysed through a meta-analysis to produce a pooled estimate of the risk ratio using a random effects model for that characteristic. RESULTS: One hundred and eight studies were included in this review. We found that inequalities in wealth, education, and geographic access can affect vaccine impact and vaccination dropout. We estimated those living in rural areas were not significantly different in terms of full vaccination status compared to urban areas but noted considerable heterogeneity between countries. We found that females were 3% (95%CI[1%, 5%]) less likely to be fully vaccinated than males. Additionally, we estimated that children whose mothers had no formal education were 28% (95%CI[18%,47%]) less likely to be fully vaccinated than those whose mother had primary level, or above, education. Finally, we found that individuals in the poorest wealth quintile were 27% (95%CI [16%,37%]) less likely to be fully vaccinated than those in the richest. CONCLUSIONS: We found a nuanced picture of inequality in vaccination coverage and access with wealth disparity dominating, and likely driving, other disparities. This review highlights the complex landscape of inequity and further need to design vaccination strategies targeting missed subgroups to improve and recover vaccination coverage following the COVID-19 pandemic. TRIAL REGISTRATION: Prospero, CRD42021261927.


Assuntos
COVID-19 , Vacinas , Criança , Países em Desenvolvimento , Feminino , Humanos , Masculino , Pandemias , Vacinação , Cobertura Vacinal
4.
Nature ; 520(7545): 45-50, 2015 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-25832402

RESUMO

Human activities, especially conversion and degradation of habitats, are causing global biodiversity declines. How local ecological assemblages are responding is less clear--a concern given their importance for many ecosystem functions and services. We analysed a terrestrial assemblage database of unprecedented geographic and taxonomic coverage to quantify local biodiversity responses to land use and related changes. Here we show that in the worst-affected habitats, these pressures reduce within-sample species richness by an average of 76.5%, total abundance by 39.5% and rarefaction-based richness by 40.3%. We estimate that, globally, these pressures have already slightly reduced average within-sample richness (by 13.6%), total abundance (10.7%) and rarefaction-based richness (8.1%), with changes showing marked spatial variation. Rapid further losses are predicted under a business-as-usual land-use scenario; within-sample richness is projected to fall by a further 3.4% globally by 2100, with losses concentrated in biodiverse but economically poor countries. Strong mitigation can deliver much more positive biodiversity changes (up to a 1.9% average increase) that are less strongly related to countries' socioeconomic status.


Assuntos
Biodiversidade , Atividades Humanas , Animais , Conservação dos Recursos Naturais/tendências , Ecologia/tendências , História do Século XVI , História do Século XVII , História do Século XVIII , História do Século XIX , História do Século XX , História do Século XXI , Modelos Biológicos , Dinâmica Populacional , Especificidade da Espécie
5.
BMC Public Health ; 21(1): 2049, 2021 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-34753437

RESUMO

BACKGROUND: Deaths due to vaccine preventable diseases cause a notable proportion of mortality worldwide. To quantify the importance of vaccination, it is necessary to estimate the burden averted through vaccination. The Vaccine Impact Modelling Consortium (VIMC) was established to estimate the health impact of vaccination. METHODS: We describe the methods implemented by the VIMC to estimate impact by calendar year, birth year and year of vaccination (YoV). The calendar and birth year methods estimate impact in a particular year and over the lifetime of a particular birth cohort, respectively. The YoV method estimates the impact of a particular year's vaccination activities through the use of impact ratios which have no stratification and stratification by activity type and/or birth cohort. Furthermore, we detail an impact extrapolation (IE) method for use between coverage scenarios. We compare the methods, focusing on YoV for hepatitis B, measles and yellow fever. RESULTS: We find that the YoV methods estimate similar impact with routine vaccinations but have greater yearly variation when campaigns occur with the birth cohort stratification. The IE performs well for the YoV methods, providing a time-efficient mechanism for updates to impact estimates. CONCLUSIONS: These methods provide a robust set of approaches to quantify vaccination impact; however it is vital that the area of impact estimation continues to develop in order to capture the full effect of immunisation.


Assuntos
Sarampo , Febre Amarela , Coorte de Nascimento , Humanos , Sarampo/epidemiologia , Sarampo/prevenção & controle , Saúde Pública , Vacinação
6.
Emerg Infect Dis ; 26(12): 2854-2862, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33219646

RESUMO

Coronavirus disease (COVID-19) in Colombia was first diagnosed in a traveler arriving from Italy on February 26, 2020. However, limited data are available on the origins and number of introductions of COVID-19 into the country. We sequenced the causative agent of COVID-19, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), from 43 clinical samples we collected, along with another 79 genome sequences available from Colombia. We investigated the emergence and importation routes for SARS-CoV-2 into Colombia by using epidemiologic, historical air travel, and phylogenetic observations. Our study provides evidence of multiple introductions, mostly from Europe, and documents >12 lineages. Phylogenetic findings validate the lineage diversity, support multiple importation events, and demonstrate the evolutionary relationship of epidemiologically linked transmission chains. Our results reconstruct the early evolutionary history of SARS-CoV-2 in Colombia and highlight the advantages of genome sequencing to complement COVID-19 outbreak investigations.


Assuntos
COVID-19/epidemiologia , COVID-19/virologia , Genoma Viral , Genômica/métodos , Filogenia , SARS-CoV-2/genética , Colômbia/epidemiologia , Humanos , Reprodutibilidade dos Testes
9.
Lancet Glob Health ; 12(4): e563-e571, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38485425

RESUMO

BACKGROUND: There have been declines in global immunisation coverage due to the COVID-19 pandemic. Recovery has begun but is geographically variable. This disruption has led to under-immunised cohorts and interrupted progress in reducing vaccine-preventable disease burden. There have, so far, been few studies of the effects of coverage disruption on vaccine effects. We aimed to quantify the effects of vaccine-coverage disruption on routine and campaign immunisation services, identify cohorts and regions that could particularly benefit from catch-up activities, and establish if losses in effect could be recovered. METHODS: For this modelling study, we used modelling groups from the Vaccine Impact Modelling Consortium from 112 low-income and middle-income countries to estimate vaccine effect for 14 pathogens. One set of modelling estimates used vaccine-coverage data from 1937 to 2021 for a subset of vaccine-preventable, outbreak-prone or priority diseases (ie, measles, rubella, hepatitis B, human papillomavirus [HPV], meningitis A, and yellow fever) to examine mitigation measures, hereafter referred to as recovery runs. The second set of estimates were conducted with vaccine-coverage data from 1937 to 2020, used to calculate effect ratios (ie, the burden averted per dose) for all 14 included vaccines and diseases, hereafter referred to as full runs. Both runs were modelled from Jan 1, 2000, to Dec 31, 2100. Countries were included if they were in the Gavi, the Vaccine Alliance portfolio; had notable burden; or had notable strategic vaccination activities. These countries represented the majority of global vaccine-preventable disease burden. Vaccine coverage was informed by historical estimates from WHO-UNICEF Estimates of National Immunization Coverage and the immunisation repository of WHO for data up to and including 2021. From 2022 onwards, we estimated coverage on the basis of guidance about campaign frequency, non-linear assumptions about the recovery of routine immunisation to pre-disruption magnitude, and 2030 endpoints informed by the WHO Immunization Agenda 2030 aims and expert consultation. We examined three main scenarios: no disruption, baseline recovery, and baseline recovery and catch-up. FINDINGS: We estimated that disruption to measles, rubella, HPV, hepatitis B, meningitis A, and yellow fever vaccination could lead to 49 119 additional deaths (95% credible interval [CrI] 17 248-134 941) during calendar years 2020-30, largely due to measles. For years of vaccination 2020-30 for all 14 pathogens, disruption could lead to a 2·66% (95% CrI 2·52-2·81) reduction in long-term effect from 37 378 194 deaths averted (34 450 249-40 241 202) to 36 410 559 deaths averted (33 515 397-39 241 799). We estimated that catch-up activities could avert 78·9% (40·4-151·4) of excess deaths between calendar years 2023 and 2030 (ie, 18 900 [7037-60 223] of 25 356 [9859-75 073]). INTERPRETATION: Our results highlight the importance of the timing of catch-up activities, considering estimated burden to improve vaccine coverage in affected cohorts. We estimated that mitigation measures for measles and yellow fever were particularly effective at reducing excess burden in the short term. Additionally, the high long-term effect of HPV vaccine as an important cervical-cancer prevention tool warrants continued immunisation efforts after disruption. FUNDING: The Vaccine Impact Modelling Consortium, funded by Gavi, the Vaccine Alliance and the Bill & Melinda Gates Foundation. TRANSLATIONS: For the Arabic, Chinese, French, Portguese and Spanish translations of the abstract see Supplementary Materials section.


Assuntos
COVID-19 , Hepatite B , Sarampo , Meningite , Infecções por Papillomavirus , Vacinas contra Papillomavirus , Rubéola (Sarampo Alemão) , Doenças Preveníveis por Vacina , Febre Amarela , Humanos , Infecções por Papillomavirus/prevenção & controle , Pandemias , COVID-19/epidemiologia , COVID-19/prevenção & controle , Vacinação , Imunização , Hepatite B/tratamento farmacológico
10.
Vaccine ; 40(31): 4142-4149, 2022 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-35672179

RESUMO

Over the past two decades, vaccination programmes for vaccine-preventable diseases (VPDs) have expanded across low- and middle-income countries (LMICs). However, the rise of COVID-19 resulted in global disruption to routine immunisation activities. Such disruptions could have a detrimental effect on public health, leading to more deaths from VPDs, particularly without mitigation efforts. Hence, as routine immunisation activities resume, it is important to estimate the effectiveness of different approaches for recovery. We apply an impact extrapolation method developed by the Vaccine Impact Modelling Consortium to estimate the impact of COVID-19-related disruptions with different recovery scenarios for ten VPDs across 112 LMICs. We focus on deaths averted due to routine immunisations occurring in the years 2020-2030 and investigate two recovery scenarios relative to a no-COVID-19 scenario. In the recovery scenarios, we assume a 10% COVID-19-related drop in routine immunisation coverage in the year 2020. We then linearly interpolate coverage to the year 2030 to investigate two routes to recovery, whereby the immunization agenda (IA2030) targets are reached by 2030 or fall short by 10%. We estimate that falling short of the IA2030 targets by 10% leads to 11.26% fewer fully vaccinated persons (FVPs) and 11.34% more deaths over the years 2020-2030 relative to the no-COVID-19 scenario, whereas, reaching the IA2030 targets reduces these proportions to 5% fewer FVPs and 5.22% more deaths. The impact of the disruption varies across the VPDs with diseases where coverage expands drastically in future years facing a smaller detrimental effect. Overall, our results show that drops in routine immunisation coverage could result in more deaths due to VPDs. As the impact of COVID-19-related disruptions is dependent on the vaccination coverage that is achieved over the coming years, the continued efforts of building up coverage and addressing gaps in immunity are vital in the road to recovery.


Assuntos
COVID-19 , Doenças Preveníveis por Vacina , COVID-19/prevenção & controle , Humanos , Imunização , Programas de Imunização , Vacinação/métodos , Doenças Preveníveis por Vacina/epidemiologia , Doenças Preveníveis por Vacina/prevenção & controle
11.
Vaccine ; 40(47): 6806-6817, 2022 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-36244882

RESUMO

Despite vaccination being one of the most effective public health interventions, there are persisting inequalities and inequities in immunisation. Understanding the differences in subnational vaccine impact can help improve delivery mechanisms and policy. We analyse subnational vaccination coverage of measles first-dose (MCV1) and estimate patterns of inequalities in impact, represented as deaths averted, across 45 countries in Africa. We also evaluate how much this impact would improve under more equitable vaccination coverage scenarios. Using coverage data for MCV1 from 2000-2019, we estimate the number of deaths averted at the first administrative level. We use the ratio of deaths averted per vaccination from two mathematical models to extrapolate the impact at a subnational level. Next, we calculate inequality for each country, measuring the spread of deaths averted across its regions, accounting for differences in population. Finally, using three more equitable vaccination coverage scenarios, we evaluate how much impact of MCV1 immunisation could improve by (1) assuming all regions in a country have at least national coverage, (2) assuming all regions have the observed maximum coverage; and (3) assuming all regions have at least 80% coverage. Our results show that progress in coverage and reducing inequality has slowed in the last decade in many African countries. Under the three scenarios, a significant number of additional deaths in children could be prevented each year; for example, under the observed maximum coverage scenario, global MCV1 coverage would improve from 76% to 90%, resulting in a further 363(95%CrI:299-482) deaths averted per 100,000 live births. This paper illustrates that estimates of the impact of MCV1 immunisation at a national level can mask subnational heterogeneity. We further show that a considerable number of deaths could be prevented by maximising equitable access in countries with high inequality when increasing the global coverage of MCV1 vaccination.


Assuntos
Sarampo , Criança , Humanos , Sarampo/epidemiologia , Vacinação , Programas de Imunização , Imunização , África/epidemiologia , Vacina contra Sarampo
12.
Elife ; 102021 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-34165077

RESUMO

Background: Childhood immunisation services have been disrupted by the COVID-19 pandemic. WHO recommends considering outbreak risk using epidemiological criteria when deciding whether to conduct preventive vaccination campaigns during the pandemic. Methods: We used two to three models per infection to estimate the health impact of 50% reduced routine vaccination coverage in 2020 and delay of campaign vaccination from 2020 to 2021 for measles vaccination in Bangladesh, Chad, Ethiopia, Kenya, Nigeria, and South Sudan, for meningococcal A vaccination in Burkina Faso, Chad, Niger, and Nigeria, and for yellow fever vaccination in the Democratic Republic of Congo, Ghana, and Nigeria. Our counterfactual comparative scenario was sustaining immunisation services at coverage projections made prior to COVID-19 (i.e. without any disruption). Results: Reduced routine vaccination coverage in 2020 without catch-up vaccination may lead to an increase in measles and yellow fever disease burden in the modelled countries. Delaying planned campaigns in Ethiopia and Nigeria by a year may significantly increase the risk of measles outbreaks (both countries did complete their supplementary immunisation activities (SIAs) planned for 2020). For yellow fever vaccination, delay in campaigns leads to a potential disease burden rise of >1 death per 100,000 people per year until the campaigns are implemented. For meningococcal A vaccination, short-term disruptions in 2020 are unlikely to have a significant impact due to the persistence of direct and indirect benefits from past introductory campaigns of the 1- to 29-year-old population, bolstered by inclusion of the vaccine into the routine immunisation schedule accompanied by further catch-up campaigns. Conclusions: The impact of COVID-19-related disruption to vaccination programs varies between infections and countries. Planning and implementation of campaigns should consider country and infection-specific epidemiological factors and local immunity gaps worsened by the COVID-19 pandemic when prioritising vaccines and strategies for catch-up vaccination. Funding: Bill and Melinda Gates Foundation and Gavi, the Vaccine Alliance.


Assuntos
COVID-19/epidemiologia , Programas de Imunização/estatística & dados numéricos , Sarampo/prevenção & controle , Infecções Meningocócicas/prevenção & controle , Febre Amarela/prevenção & controle , Adolescente , Adulto , África/epidemiologia , Bangladesh/epidemiologia , Criança , Pré-Escolar , Surtos de Doenças , Humanos , Programas de Imunização/métodos , Lactente , Sarampo/epidemiologia , Vacina contra Sarampo/uso terapêutico , Infecções Meningocócicas/epidemiologia , Vacinas Meningocócicas/uso terapêutico , Pandemias , Medição de Risco , SARS-CoV-2 , Vacinação/estatística & dados numéricos , Febre Amarela/epidemiologia , Vacina contra Febre Amarela/uso terapêutico , Adulto Jovem
13.
Elife ; 102021 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-34253291

RESUMO

Background: Vaccination is one of the most effective public health interventions. We investigate the impact of vaccination activities for Haemophilus influenzae type b, hepatitis B, human papillomavirus, Japanese encephalitis, measles, Neisseria meningitidis serogroup A, rotavirus, rubella, Streptococcus pneumoniae, and yellow fever over the years 2000-2030 across 112 countries. Methods: Twenty-one mathematical models estimated disease burden using standardised demographic and immunisation data. Impact was attributed to the year of vaccination through vaccine-activity-stratified impact ratios. Results: We estimate 97 (95%CrI[80, 120]) million deaths would be averted due to vaccination activities over 2000-2030, with 50 (95%CrI[41, 62]) million deaths averted by activities between 2000 and 2019. For children under-5 born between 2000 and 2030, we estimate 52 (95%CrI[41, 69]) million more deaths would occur over their lifetimes without vaccination against these diseases. Conclusions: This study represents the largest assessment of vaccine impact before COVID-19-related disruptions and provides motivation for sustaining and improving global vaccination coverage in the future. Funding: VIMC is jointly funded by Gavi, the Vaccine Alliance, and the Bill and Melinda Gates Foundation (BMGF) (BMGF grant number: OPP1157270 / INV-009125). Funding from Gavi is channelled via VIMC to the Consortium's modelling groups (VIMC-funded institutions represented in this paper: Imperial College London, London School of Hygiene and Tropical Medicine, Oxford University Clinical Research Unit, Public Health England, Johns Hopkins University, The Pennsylvania State University, Center for Disease Analysis Foundation, Kaiser Permanente Washington, University of Cambridge, University of Notre Dame, Harvard University, Conservatoire National des Arts et Métiers, Emory University, National University of Singapore). Funding from BMGF was used for salaries of the Consortium secretariat (authors represented here: TBH, MJ, XL, SE-L, JT, KW, NMF, KAMG); and channelled via VIMC for travel and subsistence costs of all Consortium members (all authors). We also acknowledge funding from the UK Medical Research Council and Department for International Development, which supported aspects of VIMC's work (MRC grant number: MR/R015600/1).JHH acknowledges funding from National Science Foundation Graduate Research Fellowship; Richard and Peggy Notebaert Premier Fellowship from the University of Notre Dame. BAL acknowledges funding from NIH/NIGMS (grant number R01 GM124280) and NIH/NIAID (grant number R01 AI112970). The Lives Saved Tool (LiST) receives funding support from the Bill and Melinda Gates Foundation.This paper was compiled by all coauthors, including two coauthors from Gavi. Other funders had no role in study design, data collection, data analysis, data interpretation, or writing of the report. All authors had full access to all the data in the study and had final responsibility for the decision to submit for publication.


Assuntos
Infecções Bacterianas/prevenção & controle , Vacinas Bacterianas/uso terapêutico , COVID-19 , Saúde Global , Modelos Biológicos , SARS-CoV-2 , Infecções Bacterianas/epidemiologia , Humanos
14.
Ecol Evol ; 7(1): 145-188, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-28070282

RESUMO

The PREDICTS project-Projecting Responses of Ecological Diversity In Changing Terrestrial Systems (www.predicts.org.uk)-has collated from published studies a large, reasonably representative database of comparable samples of biodiversity from multiple sites that differ in the nature or intensity of human impacts relating to land use. We have used this evidence base to develop global and regional statistical models of how local biodiversity responds to these measures. We describe and make freely available this 2016 release of the database, containing more than 3.2 million records sampled at over 26,000 locations and representing over 47,000 species. We outline how the database can help in answering a range of questions in ecology and conservation biology. To our knowledge, this is the largest and most geographically and taxonomically representative database of spatial comparisons of biodiversity that has been collated to date; it will be useful to researchers and international efforts wishing to model and understand the global status of biodiversity.

15.
Ecol Evol ; 4(24): 4701-35, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25558364

RESUMO

Biodiversity continues to decline in the face of increasing anthropogenic pressures such as habitat destruction, exploitation, pollution and introduction of alien species. Existing global databases of species' threat status or population time series are dominated by charismatic species. The collation of datasets with broad taxonomic and biogeographic extents, and that support computation of a range of biodiversity indicators, is necessary to enable better understanding of historical declines and to project - and avert - future declines. We describe and assess a new database of more than 1.6 million samples from 78 countries representing over 28,000 species, collated from existing spatial comparisons of local-scale biodiversity exposed to different intensities and types of anthropogenic pressures, from terrestrial sites around the world. The database contains measurements taken in 208 (of 814) ecoregions, 13 (of 14) biomes, 25 (of 35) biodiversity hotspots and 16 (of 17) megadiverse countries. The database contains more than 1% of the total number of all species described, and more than 1% of the described species within many taxonomic groups - including flowering plants, gymnosperms, birds, mammals, reptiles, amphibians, beetles, lepidopterans and hymenopterans. The dataset, which is still being added to, is therefore already considerably larger and more representative than those used by previous quantitative models of biodiversity trends and responses. The database is being assembled as part of the PREDICTS project (Projecting Responses of Ecological Diversity In Changing Terrestrial Systems - http://www.predicts.org.uk). We make site-level summary data available alongside this article. The full database will be publicly available in 2015.

16.
PLoS One ; 6(4): e18460, 2011 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-21533259

RESUMO

Panbiogeography represents an evolutionary approach to biogeography, using rational cost-efficient methods to reduce initial complexity to locality data, and depict general distribution patterns. However, few quantitative, and automated panbiogeographic methods exist. In this study, we propose a new algorithm, within a quantitative, geometrical framework, to perform panbiogeographical analyses as an alternative to more traditional methods. The algorithm first calculates a minimum spanning tree, an individual track for each species in a panbiogeographic context. Then the spatial congruence among segments of the minimum spanning trees is calculated using five congruence parameters, producing a general distribution pattern. In addition, the algorithm removes the ambiguity, and subjectivity often present in a manual panbiogeographic analysis. Results from two empirical examples using 61 species of the genus Bomarea (2340 records), and 1031 genera of both plants and animals (100118 records) distributed across the Northern Andes, demonstrated that a geometrical approach to panbiogeography is a feasible quantitative method to determine general distribution patterns for taxa, reducing complexity, and the time needed for managing large data sets.


Assuntos
Geografia , Algoritmos , Animais , Biodiversidade , Plantas/classificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA