Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Transfusion ; 64(4): 638-645, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38506497

RESUMO

BACKGROUND: Healthcare activities significantly contribute to greenhouse gas (GHG) emissions. Blood transfusions require complex, interlinked processes to collect, manufacture, and supply. Their contribution to healthcare emissions and avenues for mitigation is unknown. STUDY DESIGN AND METHODS: We performed a life cycle assessment (LCA) for red blood cell (RBC) transfusions across England where 1.36 million units are transfused annually. We defined the process flow with seven categories: donation, transportation, manufacturing, testing, stockholding, hospital transfusion, and disposal. We used direct measurements, manufacturer data, bioengineering databases, and surveys to assess electrical power usage, embodied carbon in disposable materials and reagents, and direct emissions through transportation, refrigerant leakage, and disposal. RESULTS: The central estimate of carbon footprint per unit of RBC transfused was 7.56 kg CO2 equivalent (CO2eq). The largest contribution was from transportation (2.8 kg CO2eq, 36% of total). The second largest was from hospital transfusion processes (1.9 kg CO2eq, 26%), driven mostly by refrigeration. The third largest was donation (1.3 kg CO2eq, 17%) due to the plastic blood packs. Total emissions from RBC transfusion are ~10.3 million kg CO2eq/year. DISCUSSION: This is the first study to estimate GHG emissions attributable to RBC transfusion, quantifying the contributions of each stage of the process. Primary areas for mitigation may include electric vehicles for the blood service fleet, improving the energy efficiency of refrigeration, using renewable sources of electricity, changing the plastic of blood packs, and using methods of disposal other than incineration.


Assuntos
Pegada de Carbono , Efeito Estufa , Humanos , Animais , Transfusão de Sangue , Estágios do Ciclo de Vida , Inglaterra
2.
Br J Anaesth ; 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38296752

RESUMO

BACKGROUND: Pharmaceuticals account for 19-32% of healthcare greenhouse gas (GHG) emissions. Paracetamol is a common perioperative analgesic agent. We estimated GHG emissions associated with i.v. and oral formulations of paracetamol used in the perioperative period. METHODS: Life-cycle assessment of GHG emissions (expressed as carbon dioxide equivalents CO2e) of i.v. and oral paracetamol preparations was performed. Perioperative paracetamol prescribing practices and costs for 26 hospitals in USA, UK, and Australia were retrospectively audited. For those surgical patients for whom oral formulations were indicated, CO2e and costs of actual prescribing practices for i.v. or oral doses were compared with optimal oral prescribing. RESULTS: The carbon footprint for a 1 g dose was 38 g CO2e (oral tablet), 151 g CO2e (oral liquid), and 310-628 g CO2e (i.v. dependent on type of packaging and administration supplies). Of the eligible USA patients, 37% received paracetamol (67% was i.v.). Of the eligible UK patients, 85% received paracetamol (80% was i.v.). Of the eligible Australian patients, 66% received paracetamol (70% was i.v.). If the emissions mitigation opportunity from substituting oral tablets for i.v. paracetamol is extrapolated to USA, UK, and Australia elective surgical encounters in 2019, ∼5.7 kt CO2e could have been avoided and would save 98.3% of financial costs. CONCLUSIONS: Intravenous paracetamol has 12-fold greater life-cycle carbon emissions than the oral tablet form. Glass vials have higher greenhouse gas emissions than plastic vials. Intravenous administration should be reserved for cases in which oral formulations are not feasible.

3.
Annu Rev Public Health ; 44: 255-277, 2023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-36626833

RESUMO

Climate change is a threat multiplier, exacerbating underlying vulnerabilities, worsening human health, and disrupting health systems' abilities to deliver high-quality continuous care. This review synthesizes the evidence of what the health care sector can do to adapt to a changing climate while reducing its own climate impact, identifies barriers to change, and makes recommendations to achieve sustainable, resilient health care systems.


Assuntos
Mudança Climática , Atenção à Saúde , Humanos
5.
Environ Sci Technol ; 55(10): 7102-7112, 2021 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-33913696

RESUMO

Disputes around trade inequality have been growing over the last 2 decades, with different countries claiming inequality in different terms including monetary deficits, resource appropriation and degradation, and environmental emission transfer. Despite prior input-output-based studies analyzing multidimensional trade consequences at the sector level, there is a lack of bottom-up studies that uncover the complexity of trade imbalances at the product level. This paper quantifies four types of flows, monetary, resource, embodied energy use, and embodied greenhouse gas (GHG) emissions, resulting from aluminum trade for the four economies with the highest aluminum trade, that is, the United States, China, Japan, and Australia. Results show that the United States has a negative balance in monetary flows but a positive balance in resource flows, embodied energy use, and GHG emissions. China has a positive balance in monetary and resource flows but a negative balance in embodied energy use and GHG emissions. Japan has a positive balance in all flows, while Australia has a negative balance in all flows. These heterogeneous gains and losses along the global leaders of aluminum trade arise largely from their different trade structures and the heterogeneities of price, energy use, and GHG emission intensities of aluminum products; for example, Japan mainly imports unwrought aluminum, and its quantity is 3 times that of the exported semis and finished aluminum-containing products that have similar energy and GHG emission intensities but 20 times higher prices, while Australia mainly exports bauxite and alumina that have the lowest prices, the quantity of which is 25 times that of imported semis and finished products. This study suggests that resource-related trade inequalities are not uniform across economic and environmental impacts and that trade policies must be carefully considered from various dimensions.


Assuntos
Alumínio , Dióxido de Carbono , Austrália , Dióxido de Carbono/análise , China , Japão
6.
Environ Sci Technol ; 55(5): 3240-3249, 2021 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-33577303

RESUMO

The manufacture of goods from oil, coal, or gas to everyday consumer products comprises in more or less all cases at least one catalytic step. Compared to conventional hydrothermal catalysis, electrocatalysis possesses the advantage of mild operational conditions and high selectivity, yet the potential energy savings and climate change mitigation have rarely been assessed. This study conducted a life cycle assessment (LCA) for the electrocatalytic oxidation of crude glycerol to produce lactic acid, one of the most common platform chemicals. The LCA results demonstrated a 31% reduction in global warming potential (GWP) compared to the benchmark (bio- and chemocatalytic) processes. Additionally, electrocatalysis yielded a synergetic potential to mitigate climate change depending on the scenario. For example, electrocatalysis combined with a low-carbon-intensity grid can reduce GWP by 57% if the process yields lactic acid and lignocellulosic biofuel as compared to a conventional fossil-based system with functionally equivalent products. This illustrates the potential of electrocatalysis as an important contributor to climate change mitigation across multiple industries. A technoeconomic analysis (TEA) for electrocatalytic lactic acid production indicated considerable challenges in economic feasibility due to the significant upfront capital cost. This challenge could be largely addressed by enabling dual redox processing to produce separate streams of renewable chemicals and biofuels simultaneously.


Assuntos
Biocombustíveis , Mudança Climática , Catálise , Estudos de Viabilidade , Aquecimento Global
9.
PLoS Med ; 15(7): e1002623, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-30063712

RESUMO

BACKGROUND: Human health is dependent upon environmental health. Air pollution is a leading cause of morbidity and mortality globally, and climate change has been identified as the single greatest public health threat of the 21st century. As a large, resource-intensive sector of the Canadian economy, healthcare itself contributes to pollutant emissions, both directly from facility and vehicle emissions and indirectly through the purchase of emissions-intensive goods and services. Together these are termed life cycle emissions. Here, we estimate the extent of healthcare-associated life cycle emissions as well as the public health damages they cause. METHODS AND FINDINGS: We use a linked economic-environmental-epidemiological modeling framework to quantify pollutant emissions and their implications for public health, based on Canadian national healthcare expenditures over the period 2009-2015. Expenditures gathered by the Canadian Institute for Health Information (CIHI) are matched to sectors in a national environmentally extended input-output (EEIO) model to estimate emissions of greenhouse gases (GHGs) and >300 other pollutants. Damages to human health are then calculated using the IMPACT2002+ life cycle impact assessment model, considering uncertainty in the damage factors used. On a life cycle basis, Canada's healthcare system was responsible for 33 million tonnes of carbon dioxide equivalents (CO2e), or 4.6% of the national total, as well as >200,000 tonnes of other pollutants. We link these emissions to a median estimate of 23,000 disability-adjusted life years (DALYs) lost annually from direct exposures to hazardous pollutants and from environmental changes caused by pollution, with an uncertainty range of 4,500-610,000 DALYs lost annually. A limitation of this national-level study is the use of aggregated data and multiple modeling steps to link healthcare expenditures to emissions to health damages. While informative on a national level, the applicability of these findings to guide decision-making at individual institutions is limited. Uncertainties related to national economic and environmental accounts, model representativeness, and classification of healthcare expenditures are discussed. CONCLUSIONS: Our results for GHG emissions corroborate similar estimates for the United Kingdom, Australia, and the United States, with emissions from hospitals and pharmaceuticals being the most significant expenditure categories. Non-GHG emissions are responsible for the majority of health damages, predominantly related to particulate matter (PM). This work can guide efforts by Canadian healthcare professionals toward more sustainable practices.


Assuntos
Poluentes Atmosféricos/efeitos adversos , Poluição do Ar/efeitos adversos , Atenção à Saúde , Efeito Estufa , Gases de Efeito Estufa/efeitos adversos , Setor de Assistência à Saúde , Canadá/epidemiologia , Avaliação da Deficiência , Exposição Ambiental/efeitos adversos , Monitoramento Ambiental , Setor de Assistência à Saúde/economia , Gastos em Saúde , Humanos , Medição de Risco , Fatores de Risco , Desenvolvimento Sustentável , Fatores de Tempo
11.
Am J Public Health ; 108(S2): S120-S122, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29072942

RESUMO

OBJECTIVES: To quantify the increased disease burden caused by US health care sector life cycle greenhouse gas (GHG) emissions of 614 million metric tons of carbon dioxide equivalents in 2013. METHODS: We screened for health damage factors that linked GHG emissions to disease burdens. We selected 5 factors, based on appropriate temporal modeling scales, which reflect a range of possible GHG emissions scenarios. We applied these factors to health care sector emissions. RESULTS: We projected that annual GHG emissions associated with health care in the United States would cause 123 000 to 381 000 disability-adjusted life-years in future health damages, with malnutrition being the largest damage category. CONCLUSIONS: Through their contribution to global climate change, GHG emissions will negatively affect public health because of an increased prevalence of extreme weather, flooding, vector-borne disease, and other effects. As the stewards of global health, it is important for health care professionals to recognize the magnitude of GHG emissions associated with health care itself, and the severity of associated health damages.


Assuntos
Poluição do Ar/efeitos adversos , Gases de Efeito Estufa/efeitos adversos , Setor de Assistência à Saúde , Diarreia/epidemiologia , Saúde Global/estatística & dados numéricos , Efeito Estufa/estatística & dados numéricos , Transtornos de Estresse por Calor/epidemiologia , Humanos , Malária/epidemiologia , Desnutrição/epidemiologia , Medição de Risco , Estados Unidos
12.
Environ Sci Technol ; 52(19): 11346-11358, 2018 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-29968459

RESUMO

The potential health effects associated with contaminants of emerging concern (CECs) have motivated regulatory initiatives and deployment of energy- and chemical-intensive advanced treatment processes for their removal. This study evaluates life cycle environmental and health impacts associated with advanced CEC removal processes, encompassing both the benefits of improved effluent quality as well as emissions from upstream activities. A total of 64 treatment configurations were designed and modeled for treating typical U.S. medium-strength wastewater, covering three policy-relevant representative levels of carbon and nutrient removal, with and without additional tertiary CEC removal. The USEtox model was used to calculate characterization factors of several CECs with missing values. Stochastic uncertainty analysis considered variability in influent water quality and uncertainty in CEC toxicity and associated characterization factors. Results show that advanced tertiary treatment can simultaneously reduce nutrients and CECs in effluents to specified limits, but these direct water quality benefits were outweighed by even greater increases in indirect impacts for the toxicity-related metrics, even when considering order-of-magnitude uncertainties for CEC characterization factors. Future work should consider water quality aspects not currently captured in life cycle impact assessment, such as endocrine disruption, in order to evaluate the full policy implications of the CEC removal.


Assuntos
Águas Residuárias , Poluentes Químicos da Água , Carbono , Monitoramento Ambiental , Eliminação de Resíduos Líquidos , Qualidade da Água
15.
Anesth Analg ; 127(2): 434-443, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29324492

RESUMO

BACKGROUND: Traditional medical device procurement criteria include efficacy and safety, ease of use and handling, and procurement costs. However, little information is available about life cycle environmental impacts of the production, use, and disposal of medical devices, or about costs incurred after purchase. Reusable and disposable laryngoscopes are of current interest to anesthesiologists. Facing mounting pressure to quickly meet or exceed conflicting infection prevention guidelines and oversight body recommendations, many institutions may be electively switching to single-use disposable (SUD) rigid laryngoscopes or overcleaning reusables, potentially increasing both costs and waste generation. This study provides quantitative comparisons of environmental impacts and total cost of ownership among laryngoscope options, which can aid procurement decision making to benefit facilities and public health. METHODS: We describe cradle-to-grave life cycle assessment (LCA) and life cycle costing (LCC) methods and apply these to reusable and SUD metal and plastic laryngoscope handles and tongue blade alternatives at Yale-New Haven Hospital (YNHH). The US Environmental Protection Agency's Tool for the Reduction and Assessment of Chemical and other environmental Impacts (TRACI) life cycle impact assessment method was used to model environmental impacts of greenhouse gases and other pollutant emissions. RESULTS: The SUD plastic handle generates an estimated 16-18 times more life cycle carbon dioxide equivalents (CO2-eq) than traditional low-level disinfection of the reusable steel handle. The SUD plastic tongue blade generates an estimated 5-6 times more CO2-eq than the reusable steel blade treated with high-level disinfection. SUD metal components generated much higher emissions than all alternatives. Both the SUD handle and SUD blade increased life cycle costs compared to the various reusable cleaning scenarios at YNHH. When extrapolated over 1 year (60,000 intubations), estimated costs increased between $495,000 and $604,000 for SUD handles and between $180,000 and $265,000 for SUD blades, compared to reusables, depending on cleaning scenario and assuming 4000 (rated) uses. Considering device attrition, reusable handles would be more economical than SUDs if they last through 4-5 uses, and reusable blades 5-7 uses, before loss. CONCLUSIONS: LCA and LCC are feasible methods to ease interpretation of environmental impacts and facility costs when weighing device procurement options. While management practices vary between institutions, all standard methods of cleaning were evaluated and sensitivity analyses performed so that results are widely applicable. For YNHH, the reusable options presented a considerable cost advantage, in addition to offering a better option environmentally. Avoiding overcleaning reusable laryngoscope handles and blades is desirable from an environmental perspective. Costs may vary between facilities, and LCC methodology demonstrates the importance of time-motion labor analysis when comparing reusable and disposable device options.


Assuntos
Equipamentos Descartáveis/economia , Reutilização de Equipamento/economia , Laringoscópios/economia , Laringoscópios/normas , Laringoscopia/economia , Laringoscopia/instrumentação , Dióxido de Carbono , Conservação dos Recursos Naturais , Custos e Análise de Custo , Poluentes Ambientais , Humanos , Plásticos , Risco , Aço Inoxidável , Instrumentos Cirúrgicos/economia
17.
Environ Sci Technol ; 51(12): 7148-7158, 2017 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-28537069

RESUMO

Increasing use of silver nanoparticles (AgNPs) in consumer products as antimicrobial agents has prompted extensive research toward the evaluation of their potential release to the environment and subsequent ecotoxicity to aquatic organisms. It has also been shown that AgNPs can pose significant burdens to the environment from life cycle emissions associated with their production, but these impacts must be considered in the context of actual products that contain nanosilver. Here, a cradle-to-gate life cycle assessment for the production of 15 different AgNP-enabled consumer products was performed, coupled with release studies of those same products, thus providing a consistent analytical platform for investigation of potential nanosilver impacts across a range of product types and concentrations. Environmental burdens were assessed over multiple impact categories defined by the United States Environmental Protection Agency's Tool for the Reduction and Assessment of Chemical and Other Environmental Impacts (TRACI 2.1) method. Depending on the product composition and silver loading, the contribution of AgNP synthesis to the overall impacts was seen to vary over a wide range from 1% to 99%. Release studies found that solid polymeric samples lost more silver during wash compared to fibrous materials. Estimates of direct ecotoxicity impacts of AgNP releases from those products with the highest leaching rates resulted in lower impact levels compared to cradle-to-gate ecotoxicity from production for those products. Considering both cradle-to-gate production impacts and nanoparticle release studies, in conjunction with estimates of life cycle environmental and health benefits of nanoparticle incorporation, can inform sustainable nanoenabled product design.


Assuntos
Nanopartículas Metálicas , Prata , Anti-Infecciosos , Meio Ambiente , Monitoramento Ambiental
18.
Environ Sci Technol ; 51(17): 9419-9432, 2017 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-28714306

RESUMO

Algae biodiesel (BioD) and renewable diesel (RD) have been recognized as potential solutions to mitigating fossil-fuel consumption and the associated environmental issues. Life cycle assessment (LCA) has been used by many researchers to evaluate the potential environmental impacts of these algae-derived fuels, yielding a wide range of results and, in some cases, even differing on indicating whether these fuels are preferred to petroleum-derived fuels or not. This meta-analysis reviews the methodological preferences and results for energy consumption, greenhouse gas emissions, and water consumption for 54 LCA studies that considered algae BioD and RD. The significant variation in reported results can be primarily attributed to the difference in scope, assumptions, and data sources. To minimize the variation in life cycle inventory calculations, a harmonized inventory data set including both nominal and uncertainty data is calculated for each stage of the algae-derived fuel life cycle.


Assuntos
Biocombustíveis , Microalgas , Combustíveis Fósseis , Modelos Teóricos , Petróleo , Plantas , Incerteza
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA