Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 7113, 2023 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-37932316

RESUMO

Global commitments to protect 30% of land by 2030 present an opportunity to combat the biodiversity crisis, but reducing extinction risk will depend on where countries expand protection. Here, we explore a range of 30×30 conservation scenarios that vary what dimension of biodiversity is prioritized (taxonomic groups, species-at-risk, biodiversity facets) and how protection is coordinated (transnational, national, or regional approaches) to test which decisions influence our ability to capture biodiversity in spatial planning. Using Canada as a model nation, we evaluate how well each scenario captures biodiversity using scalable indicators while accounting for climate change, data bias, and uncertainty. We find that only 15% of all terrestrial vertebrates, plants, and butterflies (representing only 6.6% of species-at-risk) are adequately represented in existing protected land. However, a nationally coordinated approach to 30×30 could protect 65% of all species representing 40% of all species-at-risk. How protection is coordinated has the largest impact, with regional approaches protecting up to 38% fewer species and 65% fewer species-at-risk, while the choice of biodiversity incurs much smaller trade-offs. These results demonstrate the potential of 30×30 while highlighting the critical importance of biodiversity-informed national strategies.


Assuntos
Borboletas , Ecossistema , Animais , Conservação dos Recursos Naturais/métodos , Biodiversidade , Vertebrados
2.
Trends Ecol Evol ; 38(9): 831-842, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37183152

RESUMO

Phenotypic plasticity enables rapid responses to environmental change, and could facilitate range shifts in response to climate change. What drives the evolution of plasticity at range edges, and the capacity of range-edge individuals to be plastic, remain unclear. Here, we propose that accurately predicting when plasticity itself evolves or mediates adaptive evolution at expanding range edges requires integrating knowledge on the demography and evolution of edge populations. Our synthesis shows that: (i) the demography of edge populations can amplify or attenuate responses to selection for plasticity through diverse pathways, and (ii) demographic effects on plasticity are modified by the stability of range edges. Our spatially explicit synthesis for plasticity has the potential to improve predictions for range shifts with climate change.


Assuntos
Adaptação Fisiológica , Mudança Climática , Humanos , Evolução Biológica , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA