Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Blood ; 133(26): 2776-2789, 2019 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-31101622

RESUMO

Anaplastic large cell lymphomas (ALCLs) represent a relatively common group of T-cell non-Hodgkin lymphomas (T-NHLs) that are unified by similar pathologic features but demonstrate marked genetic heterogeneity. ALCLs are broadly classified as being anaplastic lymphoma kinase (ALK)+ or ALK-, based on the presence or absence of ALK rearrangements. Exome sequencing of 62 T-NHLs identified a previously unreported recurrent mutation in the musculin gene, MSC E116K, exclusively in ALK- ALCLs. Additional sequencing for a total of 238 T-NHLs confirmed the specificity of MSC E116K for ALK- ALCL and further demonstrated that 14 of 15 mutated cases (93%) had coexisting DUSP22 rearrangements. Musculin is a basic helix-loop-helix (bHLH) transcription factor that heterodimerizes with other bHLH proteins to regulate lymphocyte development. The E116K mutation localized to the DNA binding domain of musculin and permitted formation of musculin-bHLH heterodimers but prevented their binding to authentic target sequence. Functional analysis showed MSCE116K acted in a dominant-negative fashion, reversing wild-type musculin-induced repression of MYC and cell cycle inhibition. Chromatin immunoprecipitation-sequencing and transcriptome analysis identified the cell cycle regulatory gene E2F2 as a direct transcriptional target of musculin. MSCE116K reversed E2F2-induced cell cycle arrest and promoted expression of the CD30-IRF4-MYC axis, whereas its expression was reciprocally induced by binding of IRF4 to the MSC promoter. Finally, ALCL cells expressing MSC E116K were preferentially targeted by the BET inhibitor JQ1. These findings identify a novel recurrent MSC mutation as a key driver of the CD30-IRF4-MYC axis and cell cycle progression in a unique subset of ALCLs.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Linfoma Anaplásico de Células Grandes/genética , Quinase do Linfoma Anaplásico/genética , Ciclo Celular/genética , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Mutação
2.
Cardiovasc Drugs Ther ; 35(3): 549-559, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-32623598

RESUMO

PURPOSE: Describe CYP2C19 sequencing results in the largest series of clopidogrel-treated cases with stent thrombosis (ST), the closest clinical phenotype to clopidogrel resistance. Evaluate the impact of CYP2C19 genetic variation detected by next-generation sequencing (NGS) with comprehensive annotation and functional studies. METHODS: Seventy ST cases on clopidogrel identified from the PLATO trial (n = 58) and Mayo Clinic biorepository (n = 12) were matched 1:1 with controls for age, race, sex, diabetes mellitus, presentation, and stent type. NGS was performed to cover the entire CYP2C19 gene. Assessment of exonic variants involved measuring in vitro protein expression levels. Intronic variants were evaluated for potential splicing motif variations. RESULTS: Poor metabolizers (n = 4) and rare CYP2C19*8, CYP2C19*15, and CYP2C19*11 alleles were identified only in ST cases. CYP2C19*17 heterozygote carriers were observed more frequently in cases (n = 29) than controls (n = 18). Functional studies of CYP2C19 exonic variants (n = 11) revealed 3 cases and only 1 control carrying a deleterious variant as determined by in vitro protein expression studies. Greater intronic variation unique to ST cases (n = 169) compared with controls (n = 84) was observed with predictions revealing 13 allele candidates that may lead to a potential disruption of splicing and a loss-of-function effect of CYP2C19 in ST cases. CONCLUSION: NGS detected CYP2C19 poor metabolizers and paradoxically greater number of so-called rapid metabolizers in ST cases. Rare deleterious exonic variation occurs in 4%, and potentially disruptive intronic alleles occur in 16% of ST cases. Additional studies are required to evaluate the role of these variants in platelet aggregation and clopidogrel metabolism.


Assuntos
Clopidogrel/farmacocinética , Citocromo P-450 CYP2C19/genética , Resistência a Medicamentos/genética , Inibidores da Agregação Plaquetária/farmacocinética , Trombose/prevenção & controle , Idoso , Alelos , Clopidogrel/administração & dosagem , Exoma/genética , Feminino , Humanos , Íntrons , Masculino , Pessoa de Meia-Idade , Inibidores da Agregação Plaquetária/administração & dosagem , Stents
3.
BMC Genomics ; 21(1): 890, 2020 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-33308163

RESUMO

BACKGROUND: There are challenges in generating mRNA-Seq data from whole-blood derived RNA as globin gene and rRNA are frequent contaminants. Given the abundance of erythrocytes in whole blood, globin genes comprise some 80% or more of the total RNA. Therefore, depletion of globin gene RNA and rRNA are critical steps required to have adequate coverage of reads mapping to the reference transcripts and thus reduce the total cost of sequencing. In this study, we directly compared the performance of probe hybridization (GLOBINClear Kit and Globin-Zero Gold rRNA Removal Kit) and RNAse-H enzymatic depletion (NEBNext® Globin & rRNA Depletion Kit and Ribo-Zero Plus rRNA Depletion Kit) methods from 1 µg of whole blood-derived RNA on mRNA-Seq profiling. All RNA samples were treated with DNaseI for additional cleanup before the depletion step and were processed for poly-A selection for library generation. RESULTS: Probe hybridization revealed a better overall performance than the RNAse-H enzymatic depletion method, detecting a higher number of genes and transcripts without 3' region bias. After depletion, samples treated with probe hybridization showed globin genes at 0.5% (±0.6%) of the total mapped reads; the RNAse-H enzymatic depletion had 3.2% (±3.8%). Probe hybridization showed more junction reads and transcripts compared with RNAse-H enzymatic depletion and also had a higher correlation (R > 0.9) than RNAse-H enzymatic depletion (R > 0.85). CONCLUSION: In this study, our results showed that 1 µg of high-quality RNA from whole blood could be routinely used for transcriptional profiling analysis studies with globin gene and rRNA depletion pre-processing. We also demonstrated that the probe hybridization depletion method is better suited to mRNA sequencing analysis with minimal effect on RNA quality during depletion procedures.


Assuntos
Poli A , RNA , Perfilação da Expressão Gênica , Globinas/genética , RNA Mensageiro/genética , Análise de Sequência de RNA
4.
Anal Chem ; 91(13): 8036-8044, 2019 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-31188565

RESUMO

Single cell RNA sequencing is a technology that provides the capability of analyzing the transcriptome of a single cell from a population. So far, single cell RNA sequencing has been focused mostly on human cells due to the larger starting amount of RNA template for subsequent amplification. One of the major challenges of applying single cell RNA sequencing to microbial cells is to amplify the femtograms of the RNA template to obtain sufficient material for downstream sequencing with minimal contamination. To achieve this goal, efforts have been focused on multiround RNA amplification, but would introduce additional contamination and bias. In this work, we for the first time coupled a microfluidic platform with multiple displacement amplification technology to perform single cell whole transcriptome amplification and sequencing of Porphyromonas somerae, a microbe of interest in endometrial cancer, as a proof-of-concept demonstration of using single cell RNA sequencing tool to unveil gene expression heterogeneity in single microbial cells. Our results show that the bacterial single-cell gene expression regulation is distinct across different cells, supporting widespread heterogeneity.


Assuntos
Perfilação da Expressão Gênica/instrumentação , Técnicas Analíticas Microfluídicas/instrumentação , Porphyromonas/genética , Análise de Célula Única/instrumentação , Transcriptoma , Desenho de Equipamento , Regulação Bacteriana da Expressão Gênica , Técnicas de Amplificação de Ácido Nucleico/instrumentação
5.
Blood ; 128(9): 1234-45, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27297792

RESUMO

Peripheral T-cell lymphomas (PTCLs) represent a heterogeneous group of T-cell malignancies that generally demonstrate aggressive clinical behavior, often are refractory to standard therapy, and remain significantly understudied. The most common World Health Organization subtype is PTCL, not otherwise specified (NOS), essentially a "wastebasket" category because of inadequate understanding to assign cases to a more specific diagnostic entity. Identification of novel fusion genes has contributed significantly to improving the classification, biologic understanding, and therapeutic targeting of PTCLs. Here, we integrated mate-pair DNA and RNA next-generation sequencing to identify chromosomal rearrangements encoding expressed fusion transcripts in PTCL, NOS. Two of 11 cases had novel fusions involving VAV1, encoding a truncated form of the VAV1 guanine nucleotide exchange factor important in T-cell receptor signaling. Fluorescence in situ hybridization studies identified VAV1 rearrangements in 10 of 148 PTCLs (7%). These were observed exclusively in PTCL, NOS (11%) and anaplastic large cell lymphoma (11%). In vitro, ectopic expression of a VAV1 fusion promoted cell growth and migration in a RAC1-dependent manner. This growth was inhibited by azathioprine, a clinically available RAC1 inhibitor. We also identified novel kinase gene fusions, ITK-FER and IKZF2-ERBB4, as candidate therapeutic targets that show similarities to known recurrent oncogenic ITK-SYK fusions and ERBB4 transcript variants in PTCLs, respectively. Additional novel and potentially clinically relevant fusions also were discovered. Together, these findings identify VAV1 fusions as recurrent and targetable events in PTCLs and highlight the potential for clinical sequencing to guide individualized therapy approaches for this group of aggressive malignancies.


Assuntos
Linfoma de Células T Periférico/genética , Proteínas de Fusão Oncogênica/genética , Idoso , Animais , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Células Jurkat , Linfoma de Células T Periférico/metabolismo , Masculino , Camundongos , Pessoa de Meia-Idade , Células NIH 3T3 , Proteínas de Fusão Oncogênica/metabolismo
6.
Circulation ; 131(23): 2051-60, 2015 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-25922419

RESUMO

BACKGROUND: Long-QT syndrome (LQTS) may result in syncope, seizures, or sudden cardiac arrest. Although 16 LQTS-susceptibility genes have been discovered, 20% to 25% of LQTS remains genetically elusive. METHODS AND RESULTS: We performed whole-exome sequencing child-parent trio analysis followed by recessive and sporadic inheritance modeling and disease-network candidate analysis gene ranking to identify a novel underlying genetic mechanism for LQTS. Subsequent mutational analysis of the candidate gene was performed with polymerase chain reaction, denaturing high-performance liquid chromatography, and DNA sequencing on a cohort of 33 additional unrelated patients with genetically elusive LQTS. After whole-exome sequencing and variant filtration, a homozygous p.D18fs*13 TRDN-encoded triadin frameshift mutation was discovered in a 10-year-old female patient with LQTS with a QTc of 500 milliseconds who experienced recurrent exertion-induced syncope/cardiac arrest beginning at 1 year of age. Subsequent mutational analysis of TRDN revealed either homozygous or compound heterozygous frameshift mutations in 4 of 33 unrelated cases of LQTS (12%). All 5 TRDN-null patients displayed extensive T-wave inversions in precordial leads V1 through V4, with either persistent or transient QT prolongation and severe disease expression of exercise-induced cardiac arrest in early childhood (≤3 years of age) and required aggressive therapy. The overall yield of TRDN mutations was significantly greater in patients ≤10 years of age (5 of 10, 50%) compared with older patients (0 of 24, 0%; P=0.0009). CONCLUSIONS: We identified TRDN as a novel underlying genetic basis for recessively inherited LQTS. All TRDN-null patients had strikingly similar phenotypes. Given the recurrent nature of potential lethal arrhythmias, patients fitting this phenotypic profile should undergo cardiac TRDN genetic testing.


Assuntos
Proteínas de Transporte/genética , Parada Cardíaca/genética , Síndrome do QT Longo/genética , Proteínas Musculares/genética , Adolescente , Adulto , Idoso , Criança , Pré-Escolar , Desfibriladores Implantáveis , Exoma , Feminino , Mutação da Fase de Leitura , Genes Recessivos , Parada Cardíaca/diagnóstico , Heterozigoto , Homozigoto , Humanos , Lactente , Síndrome do QT Longo/diagnóstico , Síndrome do QT Longo/terapia , Masculino , Pessoa de Meia-Idade , Linhagem , Fenótipo , Análise de Sequência de DNA , Simpatectomia , Síncope/diagnóstico , Síncope/genética , Síndrome , Resultado do Tratamento , Adulto Jovem
7.
Nucleic Acids Res ; 42(15): 9602-11, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25081206

RESUMO

Previous studies have analyzed patterns of transcription, transcription factor (TF) binding or mapped nucleosome occupancy across the genome. These suggest that the three aspects are genetically connected but the cause and effect relationships are still unknown. For example, physiologic TF binding studies involve many TFs, consequently, it is difficult to assign nucleosome reorganization to the binding site occupancy of any particular TF. Therefore, several aspects remain unclear: does TF binding influence nucleosome (re)organizations locally or impact the chromatin landscape at a more global level; are all or only a fraction of TF binding a result of reorganization in nucleosome occupancy and do all TF binding and associated changes in nucleosome occupancy result in altered gene expression? With these in mind, following characterization of two states (before and after induction of a single TF of choice) we determined: (i) genomic binding sites of the TF, (ii) promoter nucleosome occupancy and (iii) transcriptome profiles. Results demonstrated that promoter-proximal TF binding influenced expression of the target gene when it was coupled to nucleosome repositioning at or close to its binding site in most cases. In contrast, only in few cases change in target gene expression was found when TF binding occurred without local nucleosome reorganization.


Assuntos
Nucleossomos/metabolismo , Regiões Promotoras Genéticas , Fatores de Transcrição/metabolismo , Transcrição Gênica , Sítios de Ligação , Linhagem Celular Tumoral , Genoma Humano , Humanos , Neoplasias Pulmonares/genética , Nucleosídeo NM23 Difosfato Quinases/metabolismo
9.
Gastroenterology ; 145(5): 1098-1109.e1, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23912084

RESUMO

BACKGROUND & AIMS: Increasing grade of pancreatic intraepithelial neoplasia (PanIN) has been associated with progression to pancreatic ductal adenocarcinoma (PDAC). However, the mechanisms that control progression from PanINs to PDAC are not well understood. We investigated the genetic alterations involved in this process. METHODS: Genomic DNA samples from laser-capture microdissected PDACs and adjacent PanIN2 and PanIN3 lesions from 10 patients with pancreatic cancer were analyzed by exome sequencing. RESULTS: Similar numbers of somatic mutations were identified in PanINs and tumors, but the mutational load varied greatly among cases. Ten of the 15 isolated PanINs shared more than 50% of somatic mutations with associated tumors. Mutations common to tumors and clonally related PanIN2 and PanIN3 lesions were identified as genes that could promote carcinogenesis. KRAS and TP53 frequently were altered in PanINs and tumors, but few other recurrently modified genes were detected. Mutations in DNA damage response genes were prevalent in all samples. Genes that encode proteins involved in gap junctions, the actin cytoskeleton, the mitogen-activated protein kinase signaling pathway, axon guidance, and cell-cycle regulation were among the earliest targets of mutagenesis in PanINs that progressed to PDAC. CONCLUSIONS: Early stage PanIN2 lesions appear to contain many of the somatic gene alterations required for PDAC development.


Assuntos
Adenocarcinoma/genética , Carcinoma in Situ/genética , Progressão da Doença , Invasividade Neoplásica/genética , Neoplasias Pancreáticas/genética , Adenocarcinoma/patologia , Carcinogênese/genética , Carcinogênese/patologia , Carcinoma in Situ/patologia , DNA de Neoplasias/genética , Humanos , Mutação/genética , Invasividade Neoplásica/patologia , Neoplasias Pancreáticas/patologia , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas p21(ras) , Estudos Retrospectivos , Proteína Supressora de Tumor p53/genética , Proteínas ras/genética
10.
Blood ; 120(11): 2280-9, 2012 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-22855598

RESUMO

Peripheral T-cell lymphomas (PTCLs) are aggressive malignancies of mature T lymphocytes with 5-year overall survival rates of only ∼ 35%. Improvement in outcomes has been stymied by poor understanding of the genetics and molecular pathogenesis of PTCL, with a resulting paucity of molecular targets for therapy. We developed bioinformatic tools to identify chromosomal rearrangements using genome-wide, next-generation sequencing analysis of mate-pair DNA libraries and applied these tools to 16 PTCL patient tissue samples and 6 PTCL cell lines. Thirteen recurrent abnormalities were identified, of which 5 involved p53-related genes (TP53, TP63, CDKN2A, WWOX, and ANKRD11). Among these abnormalities were novel TP63 rearrangements encoding fusion proteins homologous to ΔNp63, a dominant-negative p63 isoform that inhibits the p53 pathway. TP63 rearrangements were seen in 11 (5.8%) of 190 PTCLs and were associated with inferior overall survival; they also were detected in 2 (1.2%) of 164 diffuse large B-cell lymphomas. As TP53 mutations are rare in PTCL compared with other malignancies, our findings suggest that a constellation of alternate genetic abnormalities may contribute to disruption of p53-associated tumor suppressor function in PTCL.


Assuntos
Rearranjo Gênico , Linfoma de Células T Periférico/genética , Mutação , Fatores de Transcrição/genética , Proteína Supressora de Tumor p53/genética , Proteínas Supressoras de Tumor/genética , Linhagem Celular Tumoral , Inibidor p16 de Quinase Dependente de Ciclina/química , Inibidor p16 de Quinase Dependente de Ciclina/genética , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Análise Mutacional de DNA , Feminino , Estudo de Associação Genômica Ampla , Humanos , Linfoma Difuso de Grandes Células B/genética , Linfoma Difuso de Grandes Células B/metabolismo , Linfoma Difuso de Grandes Células B/mortalidade , Linfoma Difuso de Grandes Células B/patologia , Linfoma de Células T Periférico/metabolismo , Linfoma de Células T Periférico/mortalidade , Linfoma de Células T Periférico/patologia , Masculino , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Proteínas de Fusão Oncogênica/química , Proteínas de Fusão Oncogênica/genética , Proteínas de Fusão Oncogênica/metabolismo , Oxirredutases/química , Oxirredutases/genética , Oxirredutases/metabolismo , Proteínas Repressoras/química , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Homologia de Sequência do Ácido Nucleico , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo , Proteína Supressora de Tumor p53/química , Proteína Supressora de Tumor p53/metabolismo , Proteínas Supressoras de Tumor/química , Proteínas Supressoras de Tumor/metabolismo , Estados Unidos , Oxidorredutase com Domínios WW
11.
Genes Chromosomes Cancer ; 52(11): 1097-102, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23999969

RESUMO

Chromosomal translocations leading to expression of abnormal fusion proteins play a major role in the pathogenesis of various hematologic malignancies. The recent development of high-throughput, "deep" sequencing has allowed discovery of novel translocations leading to a rapid increase in understanding these diseases. Translocations involving the anaplastic lymphoma kinase (ALK) gene leading to ALK fusion proteins originally were discovered in anaplastic large cell lymphomas (ALCLs). Among ALCLs, NPM1-ALK fusions are most common and lead to nuclear localization of the fusion protein. Here, we present a 50-year-old male with ALCL demonstrating cytoplasmic ALK immunoreactivity only, suggesting the presence of a non-NPM1 fusion partner. We performed deep RNA sequencing of tumor tissue from this patient and identified a novel transcript fusing Exon 6 of TRAF1 to Exon 20 of ALK. The TRAF1-ALK fusion transcript was confirmed at the mRNA level by Sanger sequencing and the fusion protein was visualized by Western blot. The discovery of this TRAF1-ALK fusion expands the diversity of known ALK fusion partners and highlights the power of deep sequencing for fusion transcript discovery. © 2013 Wiley Periodicals, Inc.


Assuntos
Linfoma Anaplásico de Células Grandes/genética , Receptores Proteína Tirosina Quinases/genética , Análise de Sequência de RNA , Fator 1 Associado a Receptor de TNF/genética , Quinase do Linfoma Anaplásico , Fusão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Nucleofosmina , Translocação Genética
12.
Pharmacogenet Genomics ; 23(3): 156-66, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23324805

RESUMO

OBJECTIVES: FKBP51 (51 kDa immunophilin) acts as a modulator of the glucocorticoid receptor and a negative regulator of the Akt pathway. Genetic variation in FKBP5 plays a role in antidepressant response. The aim of this study was to comprehensively assess the role of genetic variation in FKBP5, identified by both Sanger and Next Generation DNA resequencing, as well as genome-wide single nucleotide polymorphisms (SNPs) associated with FKBP5 expression in the response to the selective serotonin reuptake inhibitor (SSRI) treatment of major depressive disorder. METHODS: We identified 657 SNPs in FKBP5 by Next Generation sequencing of 96 DNA samples from white patients, and 149 SNPs were selected for the genotyping together with 235 SNPs that were trans-associated with variation in FKBP5 expression in lymphoblastoid cells. A total of 529 DNA samples from the Mayo Clinic PGRN-SSRI Pharmacogenomic trial for which genome-wide SNPs had already been obtained were genotyped for these 384 SNPs, and associations with treatment outcomes were determined. The most significant SNPs were genotyped using 96 DNA samples from white non-Hispanic patients of the NIMH-supported Sequenced Treatment Alternatives to Relieve Depression (STAR*D) study to attempt replication, followed by functional genomic studies. RESULTS: Genotype-phenotype association analysis indicated that rs352428 was associated with both 8-week treatment response in the Mayo study (odds ratio=0.49; P=0.003) and 6-week response in the STAR*D replication study (odds ratio=0.74; P=0.05). The electrophoresis mobility shift assay and the reporter gene assay confirmed the possible role of this SNP in transcription regulation. CONCLUSION: This comprehensive FKBP5 sequence study provides insight into the role of common genetic polymorphisms that might influence SSRI treatment outcomes in major depressive disorder patients.


Assuntos
Transtorno Depressivo Maior/tratamento farmacológico , Variação Genética , Inibidores Seletivos de Recaptação de Serotonina/uso terapêutico , Proteínas de Ligação a Tacrolimo/genética , Células Cultivadas , Ensaio de Desvio de Mobilidade Eletroforética , Humanos , Mutagênese Sítio-Dirigida , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Resultado do Tratamento
13.
Blood ; 117(3): 915-9, 2011 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-21030553

RESUMO

The genetics of peripheral T-cell lymphomas are poorly understood. The most well-characterized abnormalities are translocations involving ALK, occurring in approximately half of anaplastic large cell lymphomas (ALCLs). To gain insight into the genetics of ALCLs lacking ALK translocations, we combined mate-pair DNA library construction, massively parallel ("Next Generation") sequencing, and a novel bioinformatic algorithm. We identified a balanced translocation disrupting the DUSP22 phosphatase gene on 6p25.3 and adjoining the FRA7H fragile site on 7q32.3 in a systemic ALK-negative ALCL. Using fluorescence in situ hybridization, we demonstrated that the t(6;7)(p25.3;q32.3) was recurrent in ALK-negative ALCLs. Furthermore, t(6;7)(p25.3;q32.3) was associated with down-regulation of DUSP22 and up-regulation of MIR29 microRNAs on 7q32.3. These findings represent the first recurrent translocation reported in ALK-negative ALCL and highlight the utility of massively parallel genomic sequencing to discover novel translocations in lymphoma and other cancers.


Assuntos
Cromossomos Humanos Par 6/genética , Cromossomos Humanos Par 7/genética , Linfoma Anaplásico de Células Grandes/genética , Translocação Genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Quinase do Linfoma Anaplásico , Sequência de Bases , Quebra Cromossômica , Pontos de Quebra do Cromossomo , Fosfatases de Especificidade Dupla/genética , Feminino , Humanos , Hibridização in Situ Fluorescente , Linfoma Anaplásico de Células Grandes/patologia , Masculino , MicroRNAs/genética , Pessoa de Meia-Idade , Fosfatases da Proteína Quinase Ativada por Mitógeno/genética , Dados de Sequência Molecular , Proteínas Tirosina Quinases/genética , Receptores Proteína Tirosina Quinases , Análise de Sequência de DNA/métodos
14.
J Am Soc Nephrol ; 23(5): 915-33, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22383692

RESUMO

Mutations in two large multi-exon genes, PKD1 and PKD2, cause autosomal dominant polycystic kidney disease (ADPKD). The duplication of PKD1 exons 1-32 as six pseudogenes on chromosome 16, the high level of allelic heterogeneity, and the cost of Sanger sequencing complicate mutation analysis, which can aid diagnostics of ADPKD. We developed and validated a strategy to analyze both the PKD1 and PKD2 genes using next-generation sequencing by pooling long-range PCR amplicons and multiplexing bar-coded libraries. We used this approach to characterize a cohort of 230 patients with ADPKD. This process detected definitely and likely pathogenic variants in 115 (63%) of 183 patients with typical ADPKD. In addition, we identified atypical mutations, a gene conversion, and one missed mutation resulting from allele dropout, and we characterized the pattern of deep intronic variation for both genes. In summary, this strategy involving next-generation sequencing is a model for future genetic characterization of large ADPKD populations.


Assuntos
Mutação , Rim Policístico Autossômico Dominante/genética , Análise de Sequência de DNA/métodos , Canais de Cátion TRPP/genética , Processamento Eletrônico de Dados , Humanos , Reação em Cadeia da Polimerase
15.
Blood Cancer J ; 13(1): 81, 2023 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-37193683

RESUMO

How to identify follicular lymphoma (FL) patients with low disease burden but high risk for early progression is unclear. Building on a prior study demonstrating the early transformation of FLs with high variant allele frequency (VAF) BCL2 mutations at activation-induced cytidine deaminase (AICDA) sites, we examined 11 AICDA mutational targets, including BCL2, BCL6, PAX5, PIM1, RHOH, SOCS, and MYC, in 199 newly diagnosed grade 1 and 2 FLs. BCL2 mutations with VAF ≥20% occurred in 52% of cases. Among 97 FL patients who did not initially receive rituximab-containing therapy, nonsynonymous BCL2 mutations at VAF ≥20% were associated with increased transformation risk (HR 3.01, 95% CI 1.04-8.78, p = 0.043) and a trend toward shorter event-free survival (EFS, median 20 months with mutations versus 54 months without, p = 0.052). Other sequenced genes were less frequently mutated and did not increase the prognostic value of the panel. Across the entire population, nonsynonymous BCL2 mutations at VAF ≥20% were associated with decreased EFS (HR 1.55, 95% CI 1.02-2.35, p = 0.043 after correction for FLIPI and treatment) and decreased overall survival after median 14-year follow-up (HR 1.82, 95% CI 1.05-3.17, p = 0.034). Thus, high VAF nonsynonymous BCL2 mutations remain prognostic even in the chemoimmunotherapy era.


Assuntos
Linfoma Folicular , Humanos , Linfoma Folicular/tratamento farmacológico , Linfoma Folicular/genética , Mutação , Prognóstico , Intervalo Livre de Progressão , Proteínas Proto-Oncogênicas c-bcl-2/genética
16.
J Neurochem ; 120(6): 881-90, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22220685

RESUMO

Serine hydroxymethyltransferase (SHMT) catalyzes the transfer of a ß-carbon from serine to tetrahydrofolate to form glycine and 5,10-methylene-tetrahydrofolate. This reaction plays an important role in neurotransmitter synthesis and metabolism. We set out to resequence SHMT1 and SHMT2, followed by functional genomic studies. We identified 87 and 60 polymorphisms in SHMT1 and SHMT2, respectively. We observed no significant functional effect of the 13 non-synonymous single-nucleotide polymorphism (SNPs) in these genes, either on catalytic activity or protein quantity. We imputed additional variants across the two genes using '1000 Genomes' data, and identified 14 variants that were significantly associated (p<1.0E-10) with SHMT1 messenger RNA expression in lymphoblastoid cell lines. Many of these SNPs were also significantly correlated with basal SHMT1 protein expression in 268 human liver biopsy samples. Reporter gene assays suggested that the SHMT1 promoter SNP, rs669340, contributed to this variation. Finally, SHMT1 and SHMT2 expression were significantly correlated with those of other Folate and Methionine Cycle genes at both the messenger RNA and protein levels. These experiments represent a comprehensive study of SHMT1 and SHMT2 gene sequence variation and its functional implications. In addition, we obtained preliminary indications that these genes may be co-regulated with other Folate and Methionine Cycle genes.


Assuntos
Variação Genética/genética , Genômica/métodos , Glicina Hidroximetiltransferase/classificação , Glicina Hidroximetiltransferase/genética , Adulto , Animais , Povo Asiático/genética , População Negra/genética , Células COS , Catecol O-Metiltransferase/genética , Catecol O-Metiltransferase/metabolismo , Chlorocebus aethiops , Feminino , Ácido Fólico/genética , Ácido Fólico/metabolismo , Expressão Gênica/genética , Genoma , Genótipo , Glicina Hidroximetiltransferase/metabolismo , Glicina N-Metiltransferase/genética , Glicina N-Metiltransferase/metabolismo , Humanos , Desequilíbrio de Ligação , Fígado/metabolismo , Linfócitos/citologia , Masculino , Metionina/genética , Metionina/metabolismo , Mutagênese Sítio-Dirigida/métodos , Polimorfismo de Nucleotídeo Único , RNA Mensageiro , Análise de Sequência de DNA , Estatística como Assunto , Transfecção , População Branca/genética
17.
Pharmacogenet Genomics ; 22(2): 105-16, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22173087

RESUMO

BACKGROUND AND OBJECTIVE: Gemcitabine is widely used to treat non-small cell lung cancer (NSCLC). The aim of this study was to assess the pharmacogenomic effects of the entire gemcitabine metabolic pathway, we genotyped single nucleotide polymorphisms (SNPs) within the 17 pathway genes using DNA samples from patients with NSCLC treated with gemcitabine to determine the effect of genetic variants within gemcitabine pathway genes on overall survival (OS) of patients with NSCLC after treatment of gemcitabine. METHODS: Eight of the 17 pathway genes were resequenced with DNA samples from Coriell lymphoblastoid cell lines (LCLs) using Sanger sequencing for all exons, exon-intron junctions, and 5'-, 3'-UTRs. A total of 107 tagging SNPs were selected on the basis of the resequencing data for the eight genes and on HapMap data for the remaining nine genes, followed by successful genotyping of 394 NSCLC patient DNA samples. Association of SNPs/haplotypes with OS was performed using the Cox regression model, followed by functional studies performed with LCLs and NSCLC cell lines. RESULTS: Five SNPs in four genes (CDA, NT5C2, RRM1, and SLC29A1) showed associations with OS of those patients with NSCLC, as well as nine haplotypes in four genes (RRM1, RRM2, SLC28A3, and SLC29A1) with a P value of less than 0.05. Genotype imputation using the LCLs was performed for a region of 200 kb surrounding those SNPs, followed by association studies with gemcitabine cytotoxicity. Functional studies demonstrated that downregulation of SLC29A1, NT5C2, and RRM1 in NSCLC cell lines altered cell susceptibility to gemcitabine. CONCLUSION: These studies help in identifying biomarkers to predict gemcitabine response in NSCLC, a step toward the individualized chemotherapy of lung cancer.


Assuntos
Antimetabólitos Antineoplásicos/farmacologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Desoxicitidina/análogos & derivados , Neoplasias Pulmonares/tratamento farmacológico , Polimorfismo Genético , Transdução de Sinais/genética , Antimetabólitos Antineoplásicos/uso terapêutico , Biomarcadores/metabolismo , Carcinoma Pulmonar de Células não Pequenas/mortalidade , Desoxicitidina/farmacologia , Desoxicitidina/uso terapêutico , Genótipo , Projeto HapMap , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/mortalidade , Gencitabina
18.
Drug Metab Dispos ; 40(10): 1984-92, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22807109

RESUMO

The "methionine cycle" plays a critical role in the regulation of concentrations of (S)-adenosylmethionine (AdoMet), the major biological methyl donor. We set out to study sequence variation in genes encoding the enzyme that synthesizes AdoMet in liver, methionine adenosyltransferase 1A (MAT1A) and the major hepatic AdoMet using enzyme, glycine N-methyltransferase (GNMT), as well as functional implications of that variation. We resequenced MAT1A and GNMT using DNA from 288 subjects of three ethnicities, followed by functional genomic and genotype-phenotype correlation studies performed with 268 hepatic biopsy samples. We identified 44 and 42 polymorphisms in MAT1A and GNMT, respectively. Quantitative Western blot analyses for the human liver samples showed large individual variation in MAT1A and GNMT protein expression. Genotype-phenotype correlation identified two genotyped single-nucleotide polymorphisms (SNPs), reference SNP (rs) 9471976 (corrected p = 3.9 × 10(-10)) and rs11752813 (corrected p = 1.8 × 10(-5)), and 42 imputed SNPs surrounding GNMT that were significantly associated with hepatic GNMT protein levels (corrected p values < 0.01). Reporter gene studies showed that variant alleles for both genotyped SNPs resulted in decreased transcriptional activity. Correlation analyses among hepatic protein levels for methionine cycle enzymes showed significant correlations between GNMT and MAT1A (p = 1.5 × 10(-3)) and between GNMT and betaine homocysteine methyltransferase (p = 1.6 × 10(-7)). Our discovery of SNPs that are highly associated with hepatic GNMT protein expression as well as the "coordinate regulation" of methionine cycle enzyme protein levels provide novel insight into the regulation of this important human liver biochemical pathway.


Assuntos
Glicina N-Metiltransferase/genética , Glicina N-Metiltransferase/metabolismo , Fígado/enzimologia , Metionina Adenosiltransferase/genética , Metionina Adenosiltransferase/metabolismo , Metionina/metabolismo , Polimorfismo de Nucleotídeo Único , Negro ou Afro-Americano/genética , Povo Asiático/genética , Biópsia , Western Blotting , Ácido Fólico/metabolismo , Regulação Enzimológica da Expressão Gênica , Genes Reporter , Estudos de Associação Genética , Genômica/métodos , Genótipo , Células HEK293 , Células Hep G2 , Humanos , Fenótipo , S-Adenosilmetionina/metabolismo , Análise de Sequência de DNA , Transfecção , População Branca/genética
19.
Sci Rep ; 12(1): 12580, 2022 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-35869252

RESUMO

Understanding the impact of long-term exposure of microorganisms to space is critical in understanding how these exposures impact the evolution and adaptation of microbial life under space conditions. In this work we subjected Nostoc sp. CCCryo 231-06, a cyanobacterium capable of living under many different ecological conditions, and also surviving in extreme ones, to a 23-month stay at the International Space Station (the Biology and Mars Experiment, BIOMEX, on the EXPOSE-R2 platform) and returned it to Earth for single-cell genome analysis. We used microfluidic technology and single cell sequencing to identify the changes that occurred in the whole genome of single Nostoc cells. The variant profile showed that biofilm and photosystem associated loci were the most altered, with an increased variant rate of synonymous base pair substitutions. The cause(s) of these non-random alterations and their implications to the evolutionary potential of single bacterial cells under long-term cosmic exposure warrants further investigation.


Assuntos
Exobiologia , Nostoc , Planeta Terra , Meio Ambiente Extraterreno , Nostoc/genética , Raios Ultravioleta
20.
iScience ; 25(5): 104291, 2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35573199

RESUMO

The Nostoc sp. strain CCCryo 231-06 is a cyanobacterial strain capable of surviving under extreme conditions and thus is of great interest for the astrobiology community. The knowledge of its complete genome sequence would serve as a guide for further studies. However, a major concern has been placed on the effects of contamination on the quality of sequencing data without a reference genome. Here, we report the use of microfluidic technology combined with single cell sequencing and de novo assembly to minimize the contamination and recover the complete genome of the Nostoc strain CCCryo 231-06 with high quality. 100% of the whole genome was recovered with all contaminants removed and a strongly supported phylogenetic tree. The data reported can be useful for comparative genomics for phylogenetic and taxonomic studies. The method used in this work can be applied to studies that require high-quality assemblies of genomes of unknown microorganisms.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA