Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Chem Phys ; 160(23)2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38884403

RESUMO

Nanoscale semiconductors with isolated spin impurities have been touted as promising materials for their potential use at the intersection of quantum, spin, and information technologies. Electron paramagnetic resonance (EPR) studies of spins in semiconducting carbon nanotubes have overwhelmingly focused on spins more strongly localized by sp3-type lattice defects. However, the creation of such impurities is irreversible and requires specific reactions to generate them. Shallow charge impurities, on the other hand, are more readily and widely produced by simple redox chemistry, but have not yet been investigated for their spin properties. Here, we use EPR to study p-doped (6,5) semiconducting single-wall carbon nanotubes (s-SWNTs) and elucidate the role of impurity-impurity interactions in conjunction with exchange and correlation effects for the spin behavior of this material. A quantitative comparison of the EPR signals with phenomenological modeling combined with configuration interaction electronic structure calculations of impurity pairs shows that orbital overlap, combined with exchange and correlation effects, causes the EPR signal to disappear due to spin entanglement for doping levels corresponding to impurity spacings of 14 nm (at 30 K). This transition is predicted to shift to higher doping levels with increasing temperature and to lower levels with increasing screening, providing an opportunity for improved spin control in doped s-SWNTs.

2.
ACS Nano ; 11(10): 10401-10408, 2017 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-28881133

RESUMO

Doping by chemical or physical means is key for the development of future semiconductor technologies. Ideally, charge carriers should be able to move freely in a homogeneous environment. Here, we report on evidence suggesting that excess carriers in electrochemically p-doped semiconducting single-wall carbon nanotubes (s-SWNTs) become localized, most likely due to poorly screened Coulomb interactions with counterions in the Helmholtz layer. A quantitative analysis of blue-shift, broadening, and asymmetry of the first exciton absorption band also reveals that doping leads to hard segmentation of s-SWNTs with intrinsic undoped segments being separated by randomly distributed charge puddles approximately 4 nm in width. Light absorption in these doped segments is associated with the formation of trions, spatially separated from neutral excitons. Acceleration of exciton decay in doped samples is governed by diffusive exciton transport to, and nonradiative decay at charge puddles within 3.2 ps in moderately doped s-SWNTs. The results suggest that conventional band-filling in s-SWNTs breaks down due to inhomogeneous electrochemical doping.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA