Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Int J Mol Sci ; 25(1)2023 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-38203552

RESUMO

Cartilage plays a crucial role in the human body by forming long bones during development and growth to bear loads on joints and intervertebral discs. However, the increasing prevalence of cartilage degenerative disorders is a growing public health concern, especially due to the poor innate regenerative capacity of cartilage. Chondrocytes are a source of several inflammatory mediators that play vital roles in the pathogenesis of cartilage disorders. Among these mediators, chemokines have been explored as potential contributors to cartilage degeneration and regeneration. Our review focuses on the progress made during the last ten years in identifying the regulators and roles of chemokines and their receptors in different mechanisms related to chondrocytes and cartilage. Recent findings have demonstrated that chemokines influence cartilage both positively and negatively. Their induction and involvement in either process depends on the local molecular environment and is both site- and time-dependent. One of the challenges in defining the role of chemokines in cartilage pathology or regeneration is the apparent redundancy in the interaction of chemokines with their receptors. Hence, it is crucial to determine, for each situation, whether targeting specific chemokines or their receptors will help in developing effective therapeutic strategies for cartilage repair.


Assuntos
Doenças das Cartilagens , Cartilagem , Humanos , Condrócitos , Quimiocinas , Mediadores da Inflamação
2.
J Cell Biochem ; 120(8): 13974-13984, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30977156

RESUMO

Chemokines are secreted by a wide variety of cells; their functions are dependent on the binding to their chemokine receptors (CCRs) which induce directed chemotaxis in nearby responsive cells. Chemokines and their receptors can be induced under several different conditions. Based on data from clinical studies showing an increased expression of chemokine receptor 3 (CCR3) in circulating monocytes of human subjects with lower bone mineral density (BMD) as compared to those with high BMD, we predicted a role for CCR3 in the development of peak bone mass. We, therefore, first evaluated the expression pattern of Ccr3 in bone cells, in comparison to other CCRs, that have common ligands with CCR3. While Ccr1 and Ccr3 messenger RNA (mRNA) levels increased during both RANKL-induced osteoclast differentiation and AA-induced osteoblast differentiation, the levels of Ccr5 mRNA only increased during osteoblast differentiation. To examine if CCR3 influences osteoclast and/or osteoblast differentiation, we evaluated the consequence of blocking CCR3 function using neutralizing antibody on the expression of osteoclast and osteoblast differentiation markers. Treatment with CCR3 neutralizing antibody increased mRNA levels of Trap and cathepsin K in osteoclasts and osteocalcin in osteoblasts compared to cells treated with control IgG. Based on these in vitro findings, we next assessed the role of CCR3 in vivo by evaluating the skeletal phenotypes of Ccr3 knockout and corresponding control littermate mice. Disruption of CCR3 resulted in a significant increase in femur areal BMD at 5 and 8 weeks of age by dual-energy X-ray absorptiometry. Micro-CT analysis revealed a 25% increase in trabecular bone mass at 10 weeks of age caused by corresponding changes in trabecular number and thickness compared to wild type mice. Based on our findings, we conclude that disruption of CCR3 function favors bone mass accumulation, in part via enhancement of bone metabolism. Understanding the molecular pathways through which CCR3 acts to regulate osteoclast and osteoblast functions could lead to new therapeutic approaches to prevent inflammation-induced bone loss.


Assuntos
Osso Esponjoso/anatomia & histologia , Osso Esponjoso/metabolismo , Receptores CCR3/metabolismo , Tecido Adiposo/efeitos dos fármacos , Tecido Adiposo/metabolismo , Animais , Anticorpos Neutralizantes/farmacologia , Ácido Ascórbico/farmacologia , Biomarcadores/metabolismo , Peso Corporal/efeitos dos fármacos , Osso Esponjoso/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Feminino , Fêmur/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Camundongos , Camundongos Knockout , Tamanho do Órgão/efeitos dos fármacos , Osteoblastos/citologia , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo , Osteoclastos/citologia , Osteoclastos/efeitos dos fármacos , Osteoclastos/metabolismo , Fenótipo , Ligante RANK/farmacologia , Células RAW 264.7 , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores CCR3/genética
3.
Calcif Tissue Int ; 99(5): 481-488, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27376530

RESUMO

Duffy antigen receptor for chemokines (DARC) binds to a number of pro-inflammatory chemokines, and since chemokines are known to regulate trafficking of osteoclast (OC) precursors, we predicted that DARC would regulate OC recruitment to sites of inflammation by modulating chemokine activity. To test this hypothesis, we evaluated the mRNA expression of Darc and the chemokines known to bind to DARC, in endothelial cells treated with bacterial lipopolysaccharide (LPS). The mRNA expression of Mcp-1, Rantes, Darc and Ccr5 was significantly increased in endothelial cells in response to LPS treatment. Blocking the function of DARC with neutralizing antibody partially abrogated the effect of LPS on the mRNA expression of Mcp-1 and Rantes. In vivo, mice with targeted disruption of Darc gene (Darc-KO) and control wild-type (WT) mice were used to assess the role of DARC in response to single LPS application on the top of parietal bones. Five hours post-LPS injection, local expression of Cd14 mRNA (a marker of inflammatory monocytes) was significantly increased in both lines of mice. However, the magnitude of increase was greater in WT mice compared with Darc-KO mice suggesting a role for DARC in mediating the recruitment of monocytes in response to LPS. Histological staining for tartrate-resistant acid phosphatase (TRAP) in calvaria sections taken from the injection sites revealed a significant reduction in TRAP-labeled surface per bone surface in response to LPS in Darc-KO mice compared with WT mice. Based on these findings, we concluded that DARC regulates recruitment of OC precursors at the inflammation site, probably through regulation of chemokines transcytosis across endothelial cell barrier.


Assuntos
Quimiocinas , Quimiotaxia , Sistema do Grupo Sanguíneo Duffy , Osteoclastos , Receptores de Superfície Celular , Animais , Camundongos , Proteínas de Bactérias/metabolismo , Quimiocinas/metabolismo , Quimiotaxia/fisiologia , Sistema do Grupo Sanguíneo Duffy/metabolismo , Inflamação/metabolismo , Inflamação/patologia , Lipopolissacarídeos/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Osteoclastos/metabolismo , Receptores de Superfície Celular/metabolismo , Células-Tronco/metabolismo
4.
Physiol Genomics ; 45(24): 1222-8, 2013 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-24151243

RESUMO

Using a phenotype driven n-ethyl-nitrosourea (ENU) screen in growth hormone-deficient mice, we have identified a mutant (named 14104) that exhibited a smaller bone size. Phenotype measurements by microcomputed tomography revealed that mutant mice exhibited a 43 and 34% reduction in tissue area and bone area, respectively at the femur middiaphysis. Dynamic histomorphometry revealed a 30 and 15% lower bone formation rate at the periosteal and endosteal surface, respectively. Breaking strength of the femur was reduced by 30% in the mutant mice. To determine if the 14104 locus is involved in a mechanical loading signaling pathway, the skeletal anabolic response to tibia axial loading was evaluated. The increase in trabecular response in the loaded region was severely compromised by the 14014 mutation. To identify the location of mutation, we performed linkage analysis using 62 polymorphic markers in the B6-DBA/2J F2 mice. The genome-wide linkage analysis identified the location of the mutation to a 72 to 83 cM region on chromosome 11 with peak logarithm of the odds scores of 15 for periosteal circumference at marker D11mit338. Sequence analysis revealed no mutation in the coding region of 11 potential candidate genes. Based on these data and published data on the skeletal phenotype of genes in this region, we concluded that the 109-119 Mb region of chromosome 11 harbors a bone size gene that regulates periosteal bone formation. The mutant strain developed in this study provides an important tool to identify a novel mechanosensitive gene that determines bone size during postnatal development.


Assuntos
Osso e Ossos/patologia , Cromossomos Humanos Par 11 , Etilnitrosoureia/toxicidade , Mutação , Animais , Humanos , Camundongos , Fenótipo
5.
Calcif Tissue Int ; 92(4): 362-71, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23263656

RESUMO

Studies on the identification of the genetic basis for sexual dimorphism in peak bone mass are obviously important for providing novel therapeutic approaches to prevent or treat metabolic bone diseases. Our goal in this study was to identify the bone microstructure that could lead to differences in volumetric bone mineral density (vBMD) and new candidate genes that regulate the gender effect on bone. We used a congenic line of mice that carry the BMD1-4 locus from CAST/EiJ (CAST) mice in a C57BL/6J (B6) background and show greater vBMD in female, but not male, congenics compared to age- and gender-matched B6 mice. To assess the vBMD variations between the two lines of mice, we performed µCT measurements and found no difference in cortical bone volume by tissue volume (BV/TV) between congenics and B6 mice. However, trabecular BV/TV was significantly greater in female, but not male, congenics compared to corresponding B6 mice, which was due to increased trabecular thickness but not reduced trabecular separation, suggesting that bone formation, but not bone resorption, is responsible for the trabecular bone phenotype observed in the female, but not male, congenics. To identify the gender candidate genes, we determined the polymorphisms between B6 and CAST within the BMD1-4 locus and performed gene expression profiling. We identified EF-hand calcium binding domain (Efcab2), consortin, connexin sorting protein (Cnst), and presenilin 2 (Psen2) as potential candidate genes that regulate bone mass by influencing trabecular thickness in a gender-specific manner.


Assuntos
Densidade Óssea/genética , Osso e Ossos/citologia , Cromossomos/genética , Genes Reguladores/genética , Polimorfismo de Nucleotídeo Único/genética , Caracteres Sexuais , Animais , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/fisiologia , Proteínas de Transporte/genética , Proteínas de Transporte/fisiologia , Feminino , Masculino , Proteínas de Membrana/genética , Proteínas de Membrana/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Modelos Animais , Fenótipo , Presenilina-2/genética , Presenilina-2/fisiologia
6.
Life (Basel) ; 12(6)2022 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-35743867

RESUMO

Chemokines are secreted by a large variety of cells. They are involved in controlling cell trafficking, maturation, and differentiation. However, the specific responses and effects of chemokines on specific skeletal cell types under high glucose conditions have not been investigated. Chondrocytes play an important role in osteoarthritis and fracture healing. Delayed fracture healing is one of the major health complications caused by diabetes, so the goal of this study was to evaluate the response of several chemokines to high glucose conditions in chondrocyte cells and analyze their role in the catabolic effect of hyperglycemia. ATDC5 chondrocytes were cultured in normal and high glucose media, and mRNA expression levels of several chemokines and chondrocyte differentiation markers were quantified. Bindarit, a specific inhibitor of monocyte chemotactic proteins (MCPs), was used to determine the role of MCPs in mediating the effects of high glucose conditions in chondrocyte cells. High glucose treatment upregulated the expression of three Mcps, as well as the expression of matrix metalloproteinase 13 (Mmp13) and Osteocalcin (Oc). Furthermore, bindarit treatment downregulated Mmp13 and Oc but upregulated Collagen 2 (Col2) mRNA levels in chondrocytes treated with high glucose. Moreover, treatment of chondrocytes with ascorbic acid reduced the effect of high glucose conditions on the expression of chemokines and Mmps. These data together suggest that MCPs mediate the catabolic effect of high glucose in chondrocytes.

7.
PLoS One ; 16(10): e0259553, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34710183

RESUMO

[This corrects the article DOI: 10.1371/journal.pone.0247913.].

8.
PLoS One ; 16(3): e0247913, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33651836

RESUMO

The expression of some chemokines and chemokine receptors is induced during the development of post-traumatic osteoarthritis (PTOA), but their involvement in the pathogenesis of the disease is unclear. The goal of this study was to test whether CCL21 and CXCL13 play a role in PTOA development. For this purpose, we evaluated the expression profiles of the chemokines Ccl21 and Cxcl13, matrix metalloproteinase enzymes Mmp3 and Mmp13, and inflammatory cell markers in response to partial medial meniscectomy and destabilization (MMD). We then assessed the effect of local administration of CCL21 neutralizing antibody on PTOA development and post-knee injury inflammation. The mRNA expression of both Ccl21 and Cxcl13 was induced early post-surgery, but only Ccl21 mRNA levels remained elevated 4 weeks post-surgery in rat MMD-operated knees compared to controls. This suggests that while both CXCL13 and CCL21 are involved in post-surgery inflammation, CCL21 is necessary for development of PTOA. A significant increase in the mRNA levels of Cd4, Cd8 and Cd20 was observed during the first 3 days post-surgery. Significantly, treatment with CCL21 antibody reduced post-surgical inflammation that was accompanied by a reduction in the expression of Mmp3 and Mmp13 and post-MMD cartilage degradation. Our findings are consistent with a role for CCL21 in mediating changes in early inflammation and subsequent cartilage degeneration in response to knee injury. Our results suggest that targeting CCL21 signaling pathways may yield new therapeutic approaches effective in delaying or preventing PTOA development following injury.


Assuntos
Doenças das Cartilagens/metabolismo , Cartilagem Articular/metabolismo , Quimiocina CCL21/metabolismo , Inflamação/metabolismo , Traumatismos do Joelho/metabolismo , Articulação do Joelho/metabolismo , Animais , Doenças das Cartilagens/patologia , Cartilagem Articular/patologia , Inflamação/patologia , Traumatismos do Joelho/patologia , Articulação do Joelho/patologia , Masculino , Ratos , Ratos Sprague-Dawley
9.
Genetica ; 135(1): 59-66, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18330711

RESUMO

Developing treatment strategies for osteoporosis would be facilitated by identifying genes regulating bone mineral density (BMD). One way to do so is through quantitative trait locus (QTL) mapping. However, there are sex differences in terms of the presence/absence and locations of BMD QTLs. In a previous study, our group identified a BMD QTL on chromosome 17 in the F(2) female mice of the MRL/MpJ x SJL/J cross. Here, we determined whether it was also present in the male mice of the same cross. Furthermore, we also intended to reduce the QTL region by increasing marker density. Interval mapping showed that the same QTL based on chromosomal positions was present in the male mice, with logarithmic odds (LOD) scores of 4.0 for femur BMD and 5.2 for total body BMD. Although there was a body weight QTL at the same location, the BMD QTL was not affected by the adjustment for body weight. Mapping with increased marker density indicated a most likely region of 35-55 Mb for this QTL. There were also co-localized QTLs for femur length, femur periosteal circumference (PC) and total body bone area, suggesting possibility of pleiotropy. Runx2 and VEGFA are strong candidate genes located within this QTL region.


Assuntos
Densidade Óssea/genética , Mapeamento Cromossômico , Locos de Características Quantitativas , Animais , Biomarcadores/análise , Peso Corporal/fisiologia , Cromossomos de Mamíferos , Subunidade alfa 1 de Fator de Ligação ao Core/fisiologia , Cruzamentos Genéticos , Feminino , Fêmur/fisiologia , Humanos , Escore Lod , Masculino , Camundongos , Camundongos Endogâmicos , Osteoporose/genética , Fator A de Crescimento do Endotélio Vascular/fisiologia
10.
Front Mol Neurosci ; 11: 173, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29899689

RESUMO

Cochlear inflammatory response to various environmental insults, including acoustic and ototoxic overexposures, has been increasingly become a topic of interest. As the immune response is associated with both pathology and protection, targeting specific components of the immune response is expected to dissect the relationships between cellular damage and inflammation-associated protection and repair in the cochlea. Duffy antigen receptor for chemokines (DARC) is a member of a group of atypical chemokine receptors, and essential for chemokine-regulated leukocyte/neutrophil trafficking during inflammation. Previous studies have reported that Darc deficiency alters chemokine bioavailability and leukocyte homeostasis, leading to significant anti-inflammatory effects in tissues following injury. In this study, we have used Darc knockout mice to determine the impact of a deficiency in this gene on cochlear development, as well as function in cochlea subjected to various stresses. We observed that DARC is not required for normal development of cochlear function, as evidenced by typical hearing sensitivity in juvenile Darc-KO mice, as compared to wild type (WT) C57BL/6 mice. However, Darc-KO mice exhibited improved hearing recovery after intense noise exposure when compared to wild-type. The auditory brainstem response (ABR) threshold shift between KO and WT mice was most obvious at 1-week post-noise exposure. At cochlear locations above the frequency range of the energy band of damaging noise, both hair cell survival and ribbon synapse density were improved in Darc deficient animals. In addition, the mRNA levels of some major inflammatory effectors, including Mcp-1 and Gdf15, were altered in Darc-KO mice compared to control mice at 1, 3 and 7 days post-noise exposure. These data collectively suggest that the normal Darc-dependent inflammatory response slows down the process of hearing recovery, and exacerbates cellular damage in the cochlea after noise exposure.

11.
Artigo em Inglês | MEDLINE | ID: mdl-28303118

RESUMO

Chemokines are a family of small cytokines that share a typical key structure that is stabilized by disulfide bonds between the cysteine residues at the NH2-terminal of the protein, and they are secreted by a great variety of cells in several different conditions. Their function is directly dependent on their interactions with their receptors. Chemokines are involved in cell maturation and differentiation, infection, autoimmunity, cancer, and, in general, in any situation where immune components are involved. However, their role in postfracture inflammation and fracture healing is not yet well established. In this article, we will discuss the response of chemokines to bone fracture and their potential roles in postfracture inflammation and healing based on data from our studies and from other previously published studies.

12.
J Bone Miner Res ; 21(1): 97-104, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16355278

RESUMO

UNLABELLED: Skeletal phenotype analyses of 10 B6.CAST-1 congenic sublines of mice have revealed evidence for the presence of three closely linked QTLs in Chr 1 that influence femoral vBMD both positively and negatively. INTRODUCTION: BMD is an important component of bone strength and a recognized predictor of risk for osteoporotic fracture. Our goal in this study was to fine map the chromosomal location of volumetric BMD (vBMD) quantitative trait loci (QTLs) in mouse distal chromosome 1 (Chr 1). MATERIALS AND METHODS: After several backcrosses of the B6.CAST-1T congenic strain, which carried the initial BMD QTL in Chr 1 with B6 mice, the N10F1 generation mice were intercrossed to obtain recombinations that yielded different regions of the QTL. Thirty-eight polymorphic markers were used to fine map the initial 1T QTL region (100-192 Mb). Different skeletal parameters were compared between the 10 sublines and B6 female mice at 16 weeks of age. A t-test was used to determine the significant difference between sublines and B6 control mice, whereas one-way ANOVA and posthoc (Newman-Keuls) tests were performed to compare the phenotype between the sublines. RESULTS: Significantly higher femur vBMD was found in sublines that carried cast alleles from 100 to 169 and 172 to 185 Mb of the centromere compared with the B6 control mice (10-12%, p < 0.001). However, sublines that carried cast alleles from 185 to 192 Mb showed significantly lower femur vBMD compared with the control mice (-6%, p < 0.05). Furthermore, femur vBMD phenotype showed a negative correlation with endosteal circumference (r = -0.8, p = 0.003), and a strong correlation with cortical thickness for combined data from the 10 sublines (r = 0.97, p < 0.001). Moreover, a high correlation was found between body weight and both periosteal and endosteal circumferences for sublines carrying cast alleles from 167 to 175, 168 to 185, and 169 to 185 Mb, whereas no significant correlation was found between these parameters for sublines carrying cast alleles from 172 to 185 Mb. CONCLUSIONS: Genetic analysis using congenic sublines revealed that the initial BMD QTL on Chr 1 is a complex site with multiple loci affecting bone phenotypes, showing the value of the congenic approach in clearly identifying loci that control specific traits.


Assuntos
Alelos , Densidade Óssea/genética , Cromossomos/genética , Proteínas do Citoesqueleto/genética , Locos de Características Quantitativas/genética , Animais , Mapeamento Cromossômico/métodos , Camundongos
13.
PLoS One ; 8(10): e77362, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24146983

RESUMO

There is now considerable experimental data to suggest that inflammatory cells collaborate in the healing of skeletal fractures. In terms of mechanisms that contribute to the recruitment of inflammatory cells to the fracture site, chemokines and their receptors have received considerable attention. Our previous findings have shown that Duffy antigen receptor for chemokines (Darc), the non-classical chemokine receptor that does not signal, but rather acts as a scavenger of chemokines that regulate cell migration, is a negative regulator of peak bone density in mice. Furthermore, because Darc is expressed by inflammatory and endothelial cells, we hypothesized that disruption of Darc action will affect post-fracture inflammation and consequently will affect fracture healing. To test this hypothesis, we evaluated fracture healing in mice with targeted disruption of Darc and corresponding wild type (WT) control mice. We found that fracture callus cartilage formation was significantly greater (33%) at 7 days post-surgery in Darc-KO compared to WT mice. The increased cartilage was associated with greater Collagen (Col) II expression at 3 days post-fracture and Col-X at 7 days post-fracture compared to WT mice, suggesting that Darc deficiency led to early fracture cartilage formation and differentiation. We then compared the expression of cytokine and chemokine genes known to be induced during inflammation. Interleukin (Il)-1ß, Il-6, and monocyte chemotactic protein 1 were all down regulated in the fractures derived from Darc-KO mice at one day post-fracture, consistent with an altered inflammatory response. Furthermore, the number of macrophages was significantly reduced around the fractures in Darc-KO compared to WT mice. Based on these data, we concluded that Darc plays a role in modulating the early inflammatory response to bone fracture and subsequent cartilage formation. However, the early cartilage formation was not translated with an early bone formation at the fracture site in Darc-KO compared to WT mice.


Assuntos
Quimiocinas , Sistema do Grupo Sanguíneo Duffy , Consolidação da Fratura , Fraturas Ósseas , Inflamação , Receptores de Superfície Celular , Animais , Camundongos , Biomarcadores/metabolismo , Cartilagem/metabolismo , Quimiocinas/genética , Quimiocinas/metabolismo , Modelos Animais de Doenças , Sistema do Grupo Sanguíneo Duffy/genética , Sistema do Grupo Sanguíneo Duffy/metabolismo , Fraturas Ósseas/diagnóstico por imagem , Fraturas Ósseas/metabolismo , Fraturas Ósseas/patologia , Regulação da Expressão Gênica , Inflamação/genética , Inflamação/metabolismo , Camundongos Knockout , Receptores de Superfície Celular/deficiência , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Fatores de Tempo , Microtomografia por Raio-X
14.
Genome Res ; 17(5): 577-85, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17416748

RESUMO

It is now well known that bone mineral density (BMD) variance is determined by both genetic and environmental factors. Accordingly, studies in human and animal models have revealed evidence for the presence of several quantitative trait loci (QTL) that contribute to BMD variations. However, the identification of BMD QTL genes remains a big challenge. In the current study, we focused our efforts to identify the BMD candidate gene in chromosome 1 (Chr 1) QTL that was detected from a cross involving high BMD CAST/EiJ (CAST) and low BMD C57BL/6J (B6) mice. To this end, we have combined several approaches including: (1) fine mapping the BMD QTL in Chr 1 of the B6.CAST F2 female mice using a large number of polymorphic markers; (2) the generation of congenic sublines of mice by repeated backcrossing of CAST with B6 mice and phenotype characterization; (3) expression profiling genes in the QTL region; and (4) SNP analyses to identify the mouse Duffy Antigen Receptor for Chemokines (Darc) as a candidate gene for Chr 1 BMD QTL2. We verified the involvement of the Darc protein in BMD variation by evaluating the skeletal phenotype of Darc-knockout mice and congenic sublines of mice carrying small chromosomal segments from CAST BMD QTL. Based on the findings that Darc-antibody blocked formation of multinucleated osteoclasts in vitro and that Darc from CAST binds chemokines, known to regulate osteoclast formation, with reduced affinity compared with Darc from B6 mice, we conclude that Darc regulates BMD negatively by increasing osteoclast formation, and that the genetic association between Darc gene polymorphism and BMD variations in humans merits investigation.


Assuntos
Densidade Óssea , Sistema do Grupo Sanguíneo Duffy , Locos de Características Quantitativas , Receptores de Superfície Celular , Animais , Feminino , Humanos , Camundongos , Densidade Óssea/genética , Células Cultivadas , Mapeamento Cromossômico , Regulação para Baixo/genética , Sistema do Grupo Sanguíneo Duffy/genética , Sistema do Grupo Sanguíneo Duffy/fisiologia , Camundongos Congênicos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Polimorfismo Genético , Receptores de Superfície Celular/deficiência , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/fisiologia
15.
Funct Integr Genomics ; 6(2): 157-63, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16208538

RESUMO

Wound healing/regeneration mouse models are few, and studies performed have mainly utilized crosses between MRL/MPJ (a good healer) and SJL/J (a poor healer) or MRL/lpr (a good healer) and C57BL/6J (a poor healer). Wound healing is a complex trait with many genes involved in the expression of the phenotype. Based on data from previous studies that common and additional quantitative trait loci (QTL) were identified using different crosses of inbred strains of mice for various complex traits, we hypothesized that a new cross would identify common and additional QTL, unique modes of inheritance, and interacting loci, which are responsible for variation in susceptibility to fast wound healing. In this study, we crossed DBA/1J (DBA, a good healer) and 129/SvJ (129, a poor healer) and performed a genome-wide scan using 492 (DBA x 129) F2 mice and 98 markers to identify QTL that regulate wound healing/regeneration. Four QTL on chromosomes 1, 4, 12, and 18 were identified which contributed toward wound healing in F2 mice and accounted for 17.1% of the phenotypic variation in ear punch healing. Surprisingly, locus interactions contributed to 55.7% of the phenotype variation in ear punch healing. In conclusion, we have identified novel QTL and shown that minor interacting loci contribute significantly to wound healing in DBA x 129 mice cross.


Assuntos
Cruzamentos Genéticos , Locos de Características Quantitativas , Cicatrização/genética , Animais , Orelha/lesões , Feminino , Masculino , Camundongos , Camundongos Endogâmicos DBA , Fenótipo
16.
Funct Integr Genomics ; 1(6): 375-86, 2002 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-11957112

RESUMO

Peak bone density is an important determining factor of future osteoporosis risk. We previously identified a quantitative trait locus (QTL) that contributes significantly to high bone density on mouse chromosome 1 from a cross between C57BL/6J (B6) and CAST/EiJ (CAST) mouse strains. We then generated a congenic strain, B6.CAST-1T, in which the chromosomal fragment containing this QTL had been transferred from CAST to the B6 background. The congenic mice have a significantly higher bone density than the B6 mice. In this study we performed cDNA microarray analysis to evaluate the gene expression profile that might yield insights into the mechanisms controlling the high bone density by this QTL. This study led to several interesting observations. First, approximately 60% of 8,734 gene accessions on GEM I chips were expressed in the femur of B6 mice. The expression and function of two-thirds of these expressed genes and ESTs have not been documented previously. Second, expression levels of genes related to bone formation were lower in congenic than in B6 mice. These data are consistent with a low bone formation in the congenic mice, a possibility that is confirmed by reduced skeletal alkaline phosphatase activity in serum compared with B6 mice. Third, expression levels of genes that might have negative regulatory action on bone resorption were higher in congenic than in B6 mice. Together these findings suggest that the congenic mice might have a lower bone turnover rate than B6 mice and raise the possibility that the high bone density in the congenic mice could be due to reduced bone resorption rather than increased bone formation.


Assuntos
Densidade Óssea/genética , DNA Complementar/metabolismo , Genes/fisiologia , Camundongos Congênicos/fisiologia , Característica Quantitativa Herdável , Animais , Perfilação da Expressão Gênica , Camundongos , Camundongos Endogâmicos C57BL , Análise de Sequência com Séries de Oligonucleotídeos , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA