Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Am J Obstet Gynecol ; 222(2): 183.e1-183.e9, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31494126

RESUMO

BACKGROUND: Antenatal corticosteroids (ACS) are the standard of care for maturing the fetal lung and improving outcomes for preterm infants. Antenatal corticosteroid dosing remains nonoptimized, and there is little understanding of how different treatment-to-delivery intervals may affect treatment efficacy. The durability of a lung maturational response is important because the majority of women treated with antenatal corticosteroids do not deliver within the widely accepted 1- to 7-day window of treatment efficacy. OBJECTIVE: We used a sheep model to test the duration of fetal exposures for efficacy at delivery intervals from 1 to 10 days. MATERIALS AND METHODS: For infusion studies, ewes with single fetuses were randomized to receive an intravenous bolus and maintenance infusion of betamethasone phosphate to target 1-4 ng/mL fetal plasma betamethasone for 36 hours, with delivery at 2, 4 ,or 7 days posttreatment or sterile saline solution as control. Animals receiving the clinical treatment were randomised to receive either a single injection of 0.25 mg/kg with a 1:1 mixture of betamethasone phosphate + betamethasone acetate with delivery at either 1 or 7 days posttreatment, or 2 treatments of 0.25 mg/kg betamethasone phosphate + betamethasone acetate spaced at 24 hours (giving ∼48 hours of fetal steroid exposure) with delivery at 2, 5, 7, or 10 days posttreatment. Negative control animals were treated with saline solution. All lambs were delivered at 121 ± 3 days gestational age and ventilated for 30 minutes to assess lung function. RESULTS: Preterm lambs delivered at 1 or 2 days post-antenatal corticosteroid treatment had significant improvements in lung maturation for both intravenous and single-dose intramuscular treatments. After 2 days, the efficacy of 36-hour betamethasone phosphate infusions was lost. The single dose of 1:1 betamethasone phosphate + betamethasone acetate also was ineffective at 7 days. In contrast, animals treated with 2 doses had significant improvements in lung maturation at 2, 5, and 7 days, with treatment efficacy reduced by 10 days. CONCLUSION: In preterm lambs, the durability of antenatal corticosteroids treatment depends on the duration of fetal exposure and is independent of the intravenous or intramuscular maternal route of administration. For acute 24- to 48-hour posttreatment deliveries, a 24-hour fetal antenatal corticosteroids exposure was sufficient for lung maturation. A fetal exposure duration of at least 48 hours was necessary to maintain long-term treatment durability. A single-dose ACS treatment should be sufficient for women delivering within <48 hours of antenatal corticosteroids treatment.


Assuntos
Betametasona/análogos & derivados , Parto Obstétrico , Maturidade dos Órgãos Fetais/efeitos dos fármacos , Feto/efeitos dos fármacos , Glucocorticoides/farmacologia , Pulmão/efeitos dos fármacos , Animais , Betametasona/farmacologia , Idade Gestacional , Infusões Intravenosas , Injeções Intramusculares , Pulmão/embriologia , Cuidado Pré-Natal , Ovinos , Fatores de Tempo
2.
Am J Obstet Gynecol ; 219(3): 301.e1-301.e16, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29758177

RESUMO

BACKGROUND: Antenatal corticosteroids are among the most important and widely used interventions to improve outcomes for preterm infants. Antenatal corticosteroid dosing regimens remain unoptimized and without maternal weight-adjusted dosing. We, and others, have hypothesized that, once a low concentration of maternofetal steroid exposure is achieved and maintained, the duration of the steroid exposure determines treatment efficacy. Using a sheep model of pregnancy, we tested the relationship among steroid dose, duration of exposure, and treatment efficacy. OBJECTIVE: The study was conducted to investigate the relative importance of duration and magnitude of fetal corticosteroid exposure to mature the preterm fetal ovine lung. STUDY DESIGN: Ewes with single fetuses at 120 days gestation received an intravenous bolus (loading dose) followed by a maintenance infusion of betamethasone phosphate to target 12-hour fetal plasma betamethasone concentrations of (1) 20 ng/mL, (2) 10 ng/mL, or (3) 2 ng/mL. In a subsequent experiment, fetal plasma betamethasone concentrations were targeted at 2 ng/mL for 26 hours. Negative control animals received sterile saline solution. Positive control animals received 2 intramuscular injections of 0.25 mg/kg Celestone Chronodose (betamethasone phosphate + betamethasone acetate) spaced at 24 hours. Preterm lambs were delivered surgically and ventilated 48 hours after treatment commenced. Maternal and fetal plasma betamethasone concentrations were confirmed by mass spectrometry in a parallel study of chronically catheterized, corticosteroid-treated ewes and fetuses. RESULTS: The loading and maintenance doses were achieved and maintained the desired fetal plasma betamethasone concentrations of approximately 20, 10, and 2 ng/mL for 12 hours. Compared with the 12-hour infusion-treated animals, lambs from the positive control (2 intramuscular doses of 0.25 mg/kg Celestone Chronodose) group had the greatest functional lung maturation (compliance, gas exchange, arterial pH) and molecular evidence of maturation (glucocorticoid receptor signaling activation), despite having maximum fetal plasma betamethasone concentrations 2.5 times lower than animals in the 20 ng/mL betamethasone infusion group. Lambs from the 12-hour 2-ng/mL betamethasone infusion group had little functional lung maturation. In contrast, lambs from the 26-hour 2-ng/mL betamethasone infusion group had functional lung maturation equivalent to lambs from the positive control group. CONCLUSION: In preterm lambs that were exposed to antenatal corticosteroids, high maternofetal plasma betamethasone concentrations did not correlate with improved lung maturation. The largest and most consistent improvements in lung maturation were in animals that were exposed to either the clinical course of Celestone Chronodose or a low-dose betamethasone phosphate infusion to achieve a fetal plasma betamethasone concentration of approximately 2 ng/mL for 26 hours. The duration of low-concentration maternofetal steroid exposure, not total dose or peak drug exposure, is a key determinant for antenatal corticosteroids efficacy. These findings underscore the need to develop an optimized steroid dosing regimen that may improve both the efficacy and safety of antenatal corticosteroids therapy.


Assuntos
Betametasona/análogos & derivados , Maturidade dos Órgãos Fetais/efeitos dos fármacos , Glucocorticoides/farmacologia , Pulmão/efeitos dos fármacos , Corticosteroides/administração & dosagem , Corticosteroides/farmacologia , Animais , Betametasona/administração & dosagem , Betametasona/sangue , Betametasona/farmacologia , Relação Dose-Resposta a Droga , Feminino , Glucocorticoides/administração & dosagem , Glucocorticoides/sangue , Pulmão/embriologia , Gravidez , Nascimento Prematuro , Cuidado Pré-Natal , Respiração Artificial , Ovinos , Fatores de Tempo
3.
Pharm Res ; 34(12): 2498-2516, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28702798

RESUMO

PURPOSE: To examine if pulmonary P-glycoprotein (P-gp) is functional in an intact lung; impeding the pulmonary absorption and increasing lung retention of P-gp substrates administered into the airways. Using calculated physico-chemical properties alone build a predictive Quantitative Structure-Activity Relationship (QSAR) model distinguishing whether a substrate's pulmonary absorption would be limited by P-gp or not. METHODS: A panel of 18 P-gp substrates were administered into the airways of an isolated perfused mouse lung (IPML) model derived from Mdr1a/Mdr1b knockout mice. Parallel intestinal absorption studies were performed. Substrate physico-chemical profiling was undertaken. Using multivariate analysis a QSAR model was established. RESULTS: A subset of P-gp substrates (10/18) displayed pulmonary kinetics influenced by lung P-gp. These substrates possessed distinct physico-chemical properties to those P-gp substrates unaffected by P-gp (8/18). Differential outcomes were not related to different intrinsic P-gp transporter kinetics. In the lung, in contrast to intestine, a higher degree of non-polar character is required of a P-gp substrate before the net effects of efflux become evident. The QSAR predictive model was applied to 129 substrates including eight marketed inhaled drugs, all these inhaled drugs were predicted to display P-gp dependent pulmonary disposition. CONCLUSIONS: Lung P-gp can affect the pulmonary kinetics of a subset of P-gp substrates. Physico-chemical relationships determining the significance of P-gp to absorption in the lung are different to those operative in the intestine. Our QSAR framework may assist profiling of inhaled drug discovery candidates that are also P-gp substrates. The potential for P-gp mediated pulmonary disposition exists in the clinic.


Assuntos
Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Pulmão/metabolismo , Preparações Farmacêuticas/metabolismo , Absorção pelo Trato Respiratório , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Animais , Masculino , Camundongos , Camundongos Knockout , Preparações Farmacêuticas/química , Especificidade por Substrato , Membro 4 da Subfamília B de Transportadores de Cassetes de Ligação de ATP
4.
Bioinformatics ; 31(10): 1695-7, 2015 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-25964657

RESUMO

MOTIVATION: ADME SARfari is a freely available web resource that enables comparative analyses of drug-disposition genes. It does so by integrating a number of publicly available data sources, which have subsequently been used to build data mining services, predictive tools and visualizations for drug metabolism researchers. The data include the interactions of small molecules with ADME (absorption, distribution, metabolism and excretion) proteins responsible for the metabolism and transport of molecules; available pharmacokinetic (PK) data; protein sequences of ADME-related molecular targets for pre-clinical model species and human; alignments of the orthologues including information on known SNPs (Single Nucleotide Polymorphism) and information on the tissue distribution of these proteins. In addition, in silico models have been developed, which enable users to predict which ADME relevant protein targets a novel compound is likely to interact with.


Assuntos
Farmacogenética , Farmacocinética , Software , Animais , Simulação por Computador , Cães , Genômica , Humanos , Internet , Polimorfismo de Nucleotídeo Único , Proteínas/química , Proteínas/metabolismo , Distribuição Tecidual
5.
J Med Chem ; 51(10): 2887-90, 2008 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-18433113

RESUMO

5-HT1 receptor antagonists have been discovered with good selectivity over the 5-HT transporter. This is the first report of highly potent, selective ligands for the 5-HT1A/B/D receptors with low intrinsic activity, which represent a useful set of molecules for further understanding the roles of the 5-HT1 receptor subtypes and providing new approaches for the treatment of depression.


Assuntos
Piperazinas/síntese química , Quinolinas/síntese química , Antagonistas do Receptor 5-HT1 de Serotonina , Animais , Barreira Hematoencefálica/metabolismo , Córtex Cerebral/metabolismo , Humanos , Técnicas In Vitro , Piperazinas/farmacocinética , Piperazinas/farmacologia , Quinolinas/farmacocinética , Quinolinas/farmacologia , Ensaio Radioligante , Ratos , Proteínas Recombinantes/farmacologia , Relação Estrutura-Atividade
6.
Br J Pharmacol ; 139(4): 705-14, 2003 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12812993

RESUMO

1 (6-((R)-2-[2-[4-(4-Chloro-phenoxy)-piperidin-1-yl]-ethyl]-pyrrolidine-1-sulphonyl)-1H-indole hydrochloride) (SB-656104-A), a novel 5-hydroxytryptamine (5-HT(7)) receptor antagonist, potently inhibited [(3)H]-SB-269970 binding to the human cloned 5-HT(7(a)) (pK(i) 8.7+/-0.1) and 5-HT(7(b)) (pK(i) 8.5+/-0.2) receptor variants and the rat native receptor (pK(i) 8.8+/-0.2). The compound displayed at least 30-fold selectivity for the human 5-HT(7(a)) receptor versus other human cloned 5-HT receptors apart from the 5-HT(1D) receptor ( approximately 10-fold selective). 2 SB-656104-A antagonised competitively the 5-carboxamidotryptamine (5-CT)-induced accumulation of cyclic AMP in h5-HT(7(a))/HEK293 cells with a pA(2) of 8.5. 3 Following a constant rate iv infusion to steady state in rats, SB-656104 had a blood clearance (CL(b)) of 58+/-6 ml min(-1) kg(-1) and was CNS penetrant with a steady-state brain : blood ratio of 0.9 : 1. Following i.p. administration to rats (10 mg kg(-1)), the compound displayed a t(1/2) of 1.4 h with mean brain and blood concentrations (at 1 h after dosing) of 0.80 and 1.0 micro M, respectively. 4 SB-656104-A produced a significant reversal of the 5-CT-induced hypothermic effect in guinea pigs, a pharmacodynamic model of 5-HT(7) receptor interaction in vivo (ED(50) 2 mg kg(-1)). 5 SB-656104-A, administered to rats at the beginning of the sleep period (CT 0), significantly increased the latency to onset of rapid eye movement (REM) sleep at 30 mg kg(-1) i.p. (+93%) and reduced the total amount of REM sleep at 10 and 30 mg kg(-1) i.p. with no significant effect on the latency to, or amount of, non-REM sleep. SB-269970-A produced qualitatively similar effects in the same study. 6 In summary, SB-656104-A is a novel 5-HT(7) receptor antagonist which has been utilised in the present study to provide further evidence for a role for 5-HT(7) receptors in the modulation of REM sleep.


Assuntos
Fenóis/farmacocinética , Pirrolidinas/farmacocinética , Receptores de Serotonina/efeitos dos fármacos , Antagonistas da Serotonina/farmacocinética , Serotonina/análogos & derivados , Sono REM/efeitos dos fármacos , Sono REM/fisiologia , Animais , Células CHO , Linhagem Celular , Membrana Celular/fisiologia , Cricetinae , AMP Cíclico/metabolismo , Vias de Administração de Medicamentos , Regulação da Expressão Gênica , Guanosina 5'-O-(3-Tiotrifosfato)/metabolismo , Cobaias , Humanos , Hipotermia/induzido quimicamente , Fenóis/administração & dosagem , Pirrolidinas/administração & dosagem , Ensaio Radioligante , Ratos , Ratos Sprague-Dawley , Receptores de Serotonina/genética , Serotonina/administração & dosagem , Serotonina/farmacocinética , Serotonina/farmacologia , Serotonina/fisiologia , Antagonistas da Serotonina/administração & dosagem , Trítio
7.
Drug Metab Lett ; 4(1): 25-30, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20201779

RESUMO

The results of an evaluation study of ondansetron binding to human cytochromes P450 CYP3A4 and CYP2D6 is reported. The methodology includes NMR spectroscopic measurements of substrate to heme iron distances together with molecular modelling of the enzyme-substrate interactions. It is shown that there is a generally good agreement between the experimental and calculated binding affinities for ondansetron towards CYP2D6 and CYP3A4 enzymes, based on interactive docking studies. Moreover, the modelled binding orientations for ondansetron in CYP2D6 and CYP3A4 are largely consistent with the NMR data and with the known routes for P450-mediated metabolism of this compound.


Assuntos
Citocromo P-450 CYP2D6/metabolismo , Citocromo P-450 CYP3A/metabolismo , Ondansetron/metabolismo , Heme/metabolismo , Humanos , Ferro/metabolismo , Espectroscopia de Ressonância Magnética/métodos , Modelos Moleculares , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA