Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Nat Med ; 9(3): 294-9, 2003 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-12592403

RESUMO

Three of the major biochemical pathways implicated in the pathogenesis of hyperglycemia induced vascular damage (the hexosamine pathway, the advanced glycation end product (AGE) formation pathway and the diacylglycerol (DAG)-protein kinase C (PKC) pathway) are activated by increased availability of the glycolytic metabolites glyceraldehyde-3-phosphate and fructose-6-phosphate. We have discovered that the lipid-soluble thiamine derivative benfotiamine can inhibit these three pathways, as well as hyperglycemia-associated NF-kappaB activation, by activating the pentose phosphate pathway enzyme transketolase, which converts glyceraldehyde-3-phosphate and fructose-6-phosphate into pentose-5-phosphates and other sugars. In retinas of diabetic animals, benfotiamine treatment inhibited these three pathways and NF-kappaB activation by activating transketolase, and also prevented experimental diabetic retinopathy. The ability of benfotiamine to inhibit three major pathways simultaneously might be clinically useful in preventing the development and progression of diabetic complications.


Assuntos
Retinopatia Diabética/prevenção & controle , Hiperglicemia/fisiopatologia , Tiamina/análogos & derivados , Tiamina/uso terapêutico , Transcetolase/metabolismo , Animais , Bovinos , Células Cultivadas , Diabetes Mellitus Experimental , Retinopatia Diabética/etiologia , Endotélio Vascular/citologia , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/metabolismo , Ativação Enzimática , Glucose/farmacologia , Produtos Finais de Glicação Avançada/metabolismo , Humanos , Hiperglicemia/complicações , Masculino , NF-kappa B/metabolismo , Proteína Quinase C/metabolismo , Distribuição Aleatória , Ratos , Ratos Wistar , Retina/metabolismo , Retina/patologia , Tiamina/farmacologia , Uridina Difosfato N-Acetilglicosamina/metabolismo
2.
J Clin Invest ; 116(4): 1071-80, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16528409

RESUMO

Insulin resistance markedly increases cardiovascular disease risk in people with normal glucose tolerance, even after adjustment for known risk factors such as LDL, triglycerides, HDL, and systolic blood pressure. In this report, we show that increased oxidation of FFAs in aortic endothelial cells without added insulin causes increased production of superoxide by the mitochondrial electron transport chain. FFA-induced overproduction of superoxide activated a variety of proinflammatory signals previously implicated in hyperglycemia-induced vascular damage and inactivated 2 important antiatherogenic enzymes, prostacyclin synthase and eNOS. In 2 nondiabetic rodent models--insulin-resistant, obese Zucker (fa/fa) rats and high-fat diet-induced insulin-resistant mice--inactivation of prostacyclin synthase and eNOS was prevented by inhibition of FFA release from adipose tissue; by inhibition of the rate-limiting enzyme for fatty acid oxidation in mitochondria, carnitine palmitoyltransferase I; and by reduction of superoxide levels. These studies identify what we believe to be a novel mechanism contributing to the accelerated atherogenesis and increased cardiovascular disease risk occurring in people with insulin resistance.


Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , Ácidos Graxos não Esterificados/metabolismo , Resistência à Insulina/fisiologia , Oxirredutases Intramoleculares/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Animais , Aorta , Carnitina O-Palmitoiltransferase/metabolismo , Proteínas de Transporte/metabolismo , Células Cultivadas , Relação Dose-Resposta a Droga , Endotélio Vascular/metabolismo , Glucose/metabolismo , Glucose/farmacologia , Canais Iônicos , Proteínas de Membrana/metabolismo , Proteínas Mitocondriais , Modelos Biológicos , Oxirredução , Ratos , Ratos Zucker , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/metabolismo , Superóxidos/metabolismo , Proteína Desacopladora 1
3.
J Clin Invest ; 112(7): 1049-57, 2003 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-14523042

RESUMO

In this report, we show that hyperglycemia-induced overproduction of superoxide by the mitochondrial electron transport chain activates the three major pathways of hyperglycemic damage found in aortic endothelial cells by inhibiting GAPDH activity. In bovine aortic endothelial cells, GAPDH antisense oligonucleotides activated each of the pathways of hyperglycemic vascular damage in cells cultured in 5 mM glucose to the same extent as that induced by culturing cells in 30 mM glucose. Hyperglycemia-induced GAPDH inhibition was found to be a consequence of poly(ADP-ribosyl)ation of GAPDH by poly(ADP-ribose) polymerase (PARP), which was activated by DNA strand breaks produced by mitochondrial superoxide overproduction. Both the hyperglycemia-induced decrease in activity of GAPDH and its poly(ADP-ribosyl)ation were prevented by overexpression of either uncoupling protein-1 (UCP-1) or manganese superoxide dismutase (MnSOD), which decrease hyperglycemia-induced superoxide. Overexpression of UCP-1 or MnSOD also prevented hyperglycemia-induced DNA strand breaks and activation of PARP. Hyperglycemia-induced activation of each of the pathways of vascular damage was abolished by blocking PARP activity with the competitive PARP inhibitors PJ34 or INO-1001. Elevated glucose increased poly(ADP-ribosyl)ation of GAPDH in WT aortae, but not in the aortae from PARP-1-deficient mice. Thus, inhibition of PARP blocks hyperglycemia-induced activation of multiple pathways of vascular damage.


Assuntos
Endotélio Vascular/patologia , Gliceraldeído-3-Fosfato Desidrogenases/antagonistas & inibidores , Hiperglicemia/patologia , Poli(ADP-Ribose) Polimerases/fisiologia , Animais , Bovinos , Células Cultivadas , Dano ao DNA , Angiopatias Diabéticas/etiologia , Angiopatias Diabéticas/prevenção & controle , Endotélio Vascular/metabolismo , Produtos Finais de Glicação Avançada/metabolismo , Hexosaminas/metabolismo , Mitocôndrias/metabolismo , NF-kappa B/fisiologia , Oligonucleotídeos Antissenso/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases , Proteína Quinase C/fisiologia , Superóxidos/metabolismo
4.
Cell Transplant ; 11(4): 331-49, 2002.
Artigo em Inglês | MEDLINE | ID: mdl-12162374

RESUMO

Restoration of brain function by neural transplants is largely dependent upon the survival of donor neurons. Unfortunately, in both rodent models and human patients with Parkinson's disease the survival rate of transplanted neurons has been poor. We have employed a strategy to increase the availability of nutrients to the transplant by increasing the rate at which blood vessels are formed. Replication-deficient HSV-1 vectors containing the cDNA for human vascular endothelial growth factor (HSVhvegf) and the bacterial beta-galactosidase gene (HSVlac) have been transduced in parallel into nonadherent neuronal aggregate cultures made of cells from embryonic day 15 rat mesencephalon. Gene expression from HSVlac was confirmed in fixed preparations by staining with X-gal. VEGF expression as determined by sandwich ELISA assay of culture supernatant was up to 322-fold higher in HSVhvegf-infected than HSVlac-infected sister cultures. This peptide was also biologically active, inducing endothelial cell proliferation in vitro. Adult Sprague-Dawley rats received bilateral transplants into the striatum, with HSVlac on one side and HSVhvegf on the other. At defined intervals up to 8 weeks, animals were sacrificed and vibratome sections of the striatum were assessed for various parameters of cell survival and vascularization. Results demonstrate dose-dependent increases in blood vessel density within transplants transduced with HSVhvegf. These transplants were vascularized at a faster rate up to 4 weeks after transplantation. After 8 weeks, the average size of the HSVhvegf-infected transplants was twice that of controls. In particular, the survival of transplanted dopaminergic neurons increased 3.9-fold. Taken together these experiments provide convincing evidence that the rate of vascularization may be a major determinant of neuronal survival that can be manipulated by VEGF gene transduction.


Assuntos
Encéfalo/irrigação sanguínea , Técnicas de Transferência de Genes , Neovascularização Fisiológica , Neurônios/metabolismo , Animais , Sobrevivência Celular , Transplante de Células , DNA Complementar/metabolismo , Dopamina/metabolismo , Relação Dose-Resposta a Droga , Fatores de Crescimento Endotelial/genética , Ensaio de Imunoadsorção Enzimática , Vetores Genéticos , Herpesvirus Humano 1/metabolismo , Humanos , Imuno-Histoquímica , Peptídeos e Proteínas de Sinalização Intercelular/genética , Óperon Lac , Linfocinas/genética , Masculino , Doença de Parkinson/metabolismo , Ratos , Ratos Sprague-Dawley , Fatores de Tempo , Fator A de Crescimento do Endotélio Vascular , Fatores de Crescimento do Endotélio Vascular
5.
Nat Med ; 18(6): 926-33, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22581285

RESUMO

This study establishes a mechanism for metabolic hyperalgesia based on the glycolytic metabolite methylglyoxal. We found that concentrations of plasma methylglyoxal above 600 nM discriminate between diabetes-affected individuals with pain and those without pain. Methylglyoxal depolarizes sensory neurons and induces post-translational modifications of the voltage-gated sodium channel Na(v)1.8, which are associated with increased electrical excitability and facilitated firing of nociceptive neurons, whereas it promotes the slow inactivation of Na(v)1.7. In mice, treatment with methylglyoxal reduces nerve conduction velocity, facilitates neurosecretion of calcitonin gene-related peptide, increases cyclooxygenase-2 (COX-2) expression and evokes thermal and mechanical hyperalgesia. This hyperalgesia is reflected by increased blood flow in brain regions that are involved in pain processing. We also found similar changes in streptozotocin-induced and genetic mouse models of diabetes but not in Na(v)1.8 knockout (Scn10(-/-)) mice. Several strategies that include a methylglyoxal scavenger are effective in reducing methylglyoxal- and diabetes-induced hyperalgesia. This previously undescribed concept of metabolically driven hyperalgesia provides a new basis for the design of therapeutic interventions for painful diabetic neuropathy.


Assuntos
Diabetes Mellitus Experimental/fisiopatologia , Neuropatias Diabéticas/fisiopatologia , Hiperalgesia/etiologia , Nociceptores/efeitos dos fármacos , Aldeído Pirúvico/farmacologia , Canais de Sódio/fisiologia , Animais , Circulação Cerebrovascular , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Canal de Sódio Disparado por Voltagem NAV1.8 , Condução Nervosa/efeitos dos fármacos , Nociceptores/fisiologia , Estreptozocina , Tetrodotoxina/farmacologia
6.
Endocrinology ; 150(7): 3040-8, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19246534

RESUMO

Uncoupling protein (UCP) 2 is a widely expressed mitochondrial protein whose precise function is still unclear but has been linked to mitochondria-derived reactive oxygen species production. Thus, the chronic absence of UCP2 has the potential to promote persistent reactive oxygen species accumulation and an oxidative stress response. Here, we show that Ucp2-/- mice on three highly congenic (N >10) strain backgrounds (C57BL/6J, A/J, 129/SvImJ), including two independently generated sources of Ucp2-null animals, all exhibit increased oxidative stress. Ucp2-null animals exhibit a decreased ratio of reduced glutathione to its oxidized form in blood and tissues that normally express UCP2, including pancreatic islets. Islets from Ucp2-/- mice exhibit elevated levels of numerous antioxidant enzymes, increased nitrotyrosine and F4/80 staining, but no change in insulin content. Contrary to results in Ucp2-/- mice of mixed 129/B6 strain background, glucose-stimulated insulin secretion in Ucp2-/- islets of each congenic strain was significantly decreased. These data show that the chronic absence of UCP2 causes oxidative stress, including in islets, and is accompanied by impaired glucose-stimulated insulin secretion.


Assuntos
Células Secretoras de Insulina/metabolismo , Canais Iônicos/deficiência , Proteínas Mitocondriais/deficiência , Estresse Oxidativo/genética , Animais , Glucose/farmacologia , Glutationa/sangue , Dissulfeto de Glutationa/sangue , Insulina/metabolismo , Secreção de Insulina , Camundongos , Espécies Reativas de Oxigênio/metabolismo , Proteína Desacopladora 2
7.
J Biol Chem ; 283(16): 10930-8, 2008 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-18227068

RESUMO

Tissue ischemia promotes vasculogenesis through chemokine-induced recruitment of bone marrow-derived endothelial progenitor cells (EPCs). Diabetes significantly impairs this process. Because hyperglycemia increases reactive oxygen species in a number of cell types, and because many of the defects responsible for impaired vasculogenesis involve HIF1-regulated genes, we hypothesized that HIF1 function is impaired in diabetes because of reactive oxygen species-induced modification of HIF1alpha by the glyoxalase 1 (GLO1) substrate methylglyoxal. Decreasing superoxide in diabetic mice by either transgenic expression of manganese superoxide dismutase or by administration of an superoxide dismutase mimetic corrected post-ischemic defects in neovascularization, oxygen delivery, and chemokine expression, and normalized tissue survival. In hypoxic fibroblasts cultured in high glucose, overexpression of GLO1 prevented reduced expression of both the EPC mobilizing chemokine stromal cell-derived factor-1 (SDF-1) and of vascular epidermal growth factor, which modulates growth and differentiation of recruited EPCs. In hypoxic EPCs cultured in high glucose, overexpression of GLO1 prevented reduced expression of both the SDF-1 receptor CXCR4, and endothelial nitric-oxide synthase, an enzyme essential for EPC mobilization. HIF1alpha modification by methylglyoxal reduced heterodimer formation and HIF1alpha binding to all relevant promoters. These results provide a basis for the rational design of new therapeutics to normalize impaired ischemia-induced vasculogenesis in patients with diabetes.


Assuntos
Diabetes Mellitus Experimental/patologia , Isquemia , Superóxidos/metabolismo , Animais , Transplante de Medula Óssea , Glucose/metabolismo , Hiperglicemia/patologia , Hipóxia , Lactoilglutationa Liase/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Modelos Biológicos , Óxido Nítrico Sintase Tipo III/metabolismo , Regiões Promotoras Genéticas , Aldeído Pirúvico/química
8.
J Biol Chem ; 282(42): 31038-45, 2007 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-17670746

RESUMO

Methylglyoxal is a highly reactive dicarbonyl degradation product formed from triose phosphates during glycolysis. Methylglyoxal forms stable adducts primarily with arginine residues of intracellular proteins. The biologic role of this covalent modification in regulating cell function is not known. Here we report that in mouse kidney endothelial cells, high glucose causes increased methylglyoxal modification of the corepressor mSin3A. Methylglyoxal modification of mSin3A results in increased recruitment of O-GlcNAc-transferase, with consequent increased modification of Sp3 by O-linked N-acetylglucosamine. This modification of Sp3 causes decreased binding to a glucose-responsive GC-box in the angiopoietin-2 (Ang-2) promoter, resulting in increased Ang-2 expression. Increased Ang-2 expression induced by high glucose increased expression of intracellular adhesion molecule 1 and vascular cell adhesion molecule 1 in cells and in kidneys from diabetic mice and sensitized microvascular endothelial cells to the proinflammatory effects of tumor necrosis factor alpha. This novel mechanism for regulating gene expression may play a role in the pathobiology of diabetic vascular disease.


Assuntos
Angiopoietina-2/biossíntese , Diabetes Mellitus Experimental/metabolismo , Angiopatias Diabéticas/metabolismo , Células Endoteliais/metabolismo , Glucose/metabolismo , Processamento de Proteína Pós-Traducional , Aldeído Pirúvico/metabolismo , Proteínas Repressoras/metabolismo , Transcrição Gênica , Acetilglucosamina/genética , Acetilglucosamina/metabolismo , Angiopoietina-2/genética , Animais , Arginina/genética , Arginina/metabolismo , Linhagem Celular Transformada , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/patologia , Angiopatias Diabéticas/genética , Angiopatias Diabéticas/patologia , Células Endoteliais/patologia , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Glucose/farmacologia , Glicólise/efeitos dos fármacos , Glicólise/genética , Molécula 1 de Adesão Intercelular/biossíntese , Molécula 1 de Adesão Intercelular/genética , Rim/metabolismo , Rim/patologia , Camundongos , N-Acetilglucosaminiltransferases/genética , N-Acetilglucosaminiltransferases/metabolismo , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Processamento de Proteína Pós-Traducional/genética , Proteínas Repressoras/genética , Elementos de Resposta/genética , Complexo Correpressor Histona Desacetilase e Sin3 , Fator de Transcrição Sp3/genética , Fator de Transcrição Sp3/metabolismo , Edulcorantes/metabolismo , Edulcorantes/farmacologia , Transcrição Gênica/efeitos dos fármacos , Fator de Necrose Tumoral alfa/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Molécula 1 de Adesão de Célula Vascular/biossíntese , Molécula 1 de Adesão de Célula Vascular/genética
9.
Cell ; 124(2): 275-86, 2006 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-16413606

RESUMO

Methylglyoxal is a highly reactive dicarbonyl degradation product formed from triose phosphates during glycolysis. Methylglyoxal forms stable adducts primarily with arginine residues of intracellular proteins. The biologic role of this covalent modification in regulating cell function is not known. Here, we report that in retinal Müller cells, increased glycolytic flux causes increased methylglyoxal modification of the corepressor mSin3A. Methylglyoxal modification of mSin3A results in increased recruitment of O-GlcNAc transferase to an mSin3A-Sp3 complex, with consequent increased modification of Sp3 by O-linked N-acetylglucosamine. This modification of Sp3 causes decreased binding of the repressor complex to a glucose-responsive GC box in the angiopoietin-2 promoter, resulting in increased Ang-2 expression. A similar mechanism involving methylglyoxal-modification of other coregulator proteins may play a role in the pathobiology of a variety of conditions associated with changes in methylglyoxal concentration, including cancer and diabetic vascular disease.


Assuntos
Angiopoietina-2/metabolismo , Glicólise/fisiologia , Aldeído Pirúvico/metabolismo , Proteínas Repressoras/metabolismo , Transcrição Gênica/fisiologia , Sequência de Aminoácidos , Angiopoietina-2/genética , Animais , Linhagem Celular , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/fisiologia , Humanos , Camundongos , Modelos Biológicos , Dados de Sequência Molecular , Regiões Promotoras Genéticas , Aldeído Pirúvico/farmacologia , RNA Mensageiro/biossíntese , Ratos , Proteínas Repressoras/efeitos dos fármacos , Proteínas Repressoras/genética , Retina/citologia , Retina/efeitos dos fármacos , Retina/metabolismo , Complexo Correpressor Histona Desacetilase e Sin3 , Fator de Transcrição Sp1/metabolismo , Fator de Transcrição Sp3/metabolismo , Transcrição Gênica/efeitos dos fármacos , Ativação Transcricional , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA