Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
J Am Soc Nephrol ; 35(6): 795-808, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38353655

RESUMO

Kidney injury molecule-1 (KIM-1), also known as T-cell Ig and mucin domain-1 (TIM-1), is a widely recognized biomarker for AKI, but its biological function is less appreciated. KIM-1/TIM-1 belongs to the T-cell Ig and mucin domain family of conserved transmembrane proteins, which bear the characteristic six-cysteine Ig-like variable domain. The latter enables binding of KIM-1/TIM-1 to its natural ligand, phosphatidylserine, expressed on the surface of apoptotic cells and necrotic cells. KIM-1/TIM-1 is expressed in a variety of tissues and plays fundamental roles in regulating sterile inflammation and adaptive immune responses. In the kidney, KIM-1 is upregulated on injured renal proximal tubule cells, which transforms them into phagocytes for clearance of dying cells and helps to dampen sterile inflammation. TIM-1, expressed in T cells, B cells, and natural killer T cells, is essential for cell activation and immune regulatory functions in the host. Functional polymorphisms in the gene for KIM-1/TIM-1, HAVCR1 , have been associated with susceptibility to immunoinflammatory conditions and hepatitis A virus-induced liver failure, which is thought to be due to a differential ability of KIM-1/TIM-1 variants to bind phosphatidylserine. This review will summarize the role of KIM-1/TIM-1 in health and disease and its potential clinical applications as a biomarker and therapeutic target in humans.


Assuntos
Injúria Renal Aguda , Receptor Celular 1 do Vírus da Hepatite A , Humanos , Receptor Celular 1 do Vírus da Hepatite A/metabolismo , Injúria Renal Aguda/metabolismo , Injúria Renal Aguda/imunologia , Apoptose , Animais , Biomarcadores/metabolismo
2.
J Biol Chem ; 297(3): 101042, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34358561

RESUMO

Prolonged immune activation drives the upregulation of multiple checkpoint receptors on the surface of virus-specific T cells, inducing their exhaustion. Reversing HIV-1-induced T cell exhaustion is imperative for efficient virus clearance; however, viral mediators of checkpoint receptor upregulation remain largely unknown. The enrichment of checkpoint receptors on T cells upon HIV-1 infection severely constrains the generation of an efficient immune response. Herein, we examined the role of HIV-1 Nef in mediating the upregulation of checkpoint receptors on peripheral blood mononuclear cells. We demonstrate that the HIV-1 accessory protein Nef upregulates cell surface levels of the checkpoint receptor T-cell immunoglobulin mucin domain-3 (Tim-3) and that this is dependent on Nef's dileucine motif LL164/165. Furthermore, we used a bimolecular fluorescence complementation assay to demonstrate that Nef and Tim-3 form a complex within cells that is abrogated upon mutation of the Nef dileucine motif. We also provide evidence that Nef moderately promotes Tim-3 shedding from the cell surface in a dileucine motif-dependent manner. Treating HIV-1-infected CD4+ T cells with a matrix metalloprotease inhibitor enhanced cell surface Tim-3 levels and reduced Tim-3 shedding. Finally, Tim-3-expressing CD4+ T cells displayed a higher propensity to release the proinflammatory cytokine interferon-gamma. Collectively, our findings uncover a novel mechanism by which HIV-1 directly increases the levels of a checkpoint receptor on the surface of infected CD4+ T cells.


Assuntos
Linfócitos T CD4-Positivos/metabolismo , Infecções por HIV/metabolismo , HIV-1/metabolismo , Receptor Celular 2 do Vírus da Hepatite A/metabolismo , Produtos do Gene nef do Vírus da Imunodeficiência Humana/metabolismo , Linfócitos T CD4-Positivos/virologia , Infecções por HIV/genética , Infecções por HIV/virologia , HIV-1/genética , Receptor Celular 2 do Vírus da Hepatite A/genética , Interações Hospedeiro-Patógeno , Humanos , Leucócitos Mononucleares/metabolismo , Leucócitos Mononucleares/virologia , Ligação Proteica , Produtos do Gene nef do Vírus da Imunodeficiência Humana/genética
3.
J Virol ; 95(16): e0058821, 2021 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-34037423

RESUMO

Serine incorporator 5 (SERINC5) reduces the infectivity of progeny HIV-1 virions by incorporating into the outer host-derived viral membrane during egress. To counter SERINC5, the HIV-1 accessory protein Nef triggers SERINC5 internalization by engaging the adaptor protein 2 (AP-2) complex using the [D/E]xxxL[L/I]167 Nef dileucine motif. Nef also engages AP-2 via its dileucine motif to downregulate the CD4 receptor. Although these two Nef functions are related, the mechanisms governing SERINC5 downregulation are incompletely understood. Here, we demonstrate that two primary Nef isolates, referred to as 2410 and 2391 Nef, acquired from acutely HIV-1 infected women from Zimbabwe, both downregulate CD4 from the cell surface. However, only 2410 Nef retains the ability to downregulate cell surface SERINC5. Using a series of Nef chimeras, we mapped the region of 2391 Nef responsible for the functional uncoupling of these two antagonistic pathways to the dileucine motif. Modifications of the first and second x positions of the 2410 Nef dileucine motif to asparagine and aspartic acid residues, respectively (ND164), impaired cell surface SERINC5 downregulation, which resulted in reduced infectious virus yield in the presence of SERINC5. The ND164 mutation additionally partially impaired, but did not completely abrogate, Nef-mediated cell surface CD4 downregulation. Furthermore, the patient infected with HIV-1 encoding 2391 Nef had stable CD4+ T cell counts, whereas infection with HIV-1 encoding 2410 Nef resulted in CD4+ T cell decline and disease progression. IMPORTANCE A contributing factor to HIV-1 persistence is evasion of the host immune response. HIV-1 uses the Nef accessory protein to evade the antiviral roles of the adaptive and intrinsic innate immune responses. Nef targets SERINC5, a restriction factor which potently impairs HIV-1 infection by triggering SERINC5 removal from the cell surface. The molecular determinants underlying this Nef function remain incompletely understood. Recent studies have found a correlation between the extent of Nef-mediated SERINC5 downregulation and the rate of disease progression. Furthermore, single-residue polymorphisms outside the known Nef functional motifs can modulate SERINC5 downregulation. The identification of a naturally occurring Nef polymorphism impairing SERINC5 downregulation in this study supports a link between Nef downregulation of SERINC5 and the rate of plasma CD4+ T cell decline. Moreover, the observed functional impairments of this polymorphism could provide clues to further elucidate unknown aspects of the SERINC5 antagonistic pathway via Nef.


Assuntos
Antígenos CD4/metabolismo , Infecções por HIV/virologia , HIV-1/patogenicidade , Proteínas de Membrana/metabolismo , Produtos do Gene nef do Vírus da Imunodeficiência Humana/fisiologia , Motivos de Aminoácidos , Linfócitos T CD4-Positivos/patologia , Progressão da Doença , Regulação para Baixo , Feminino , Infecções por HIV/metabolismo , HIV-1/genética , Humanos , Mutação , Polimorfismo Genético , Vírion , Produtos do Gene nef do Vírus da Imunodeficiência Humana/genética , Produtos do Gene nef do Vírus da Imunodeficiência Humana/metabolismo
4.
J Virol ; 94(7)2020 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-31941771

RESUMO

Along with other immune checkpoints, T cell immunoglobulin and mucin domain-containing protein 3 (Tim-3) is expressed on exhausted CD4+ and CD8+ T cells and is upregulated on the surface of these cells upon infection by human immunodeficiency virus type 1 (HIV-1). Recent reports have suggested an antiviral role for Tim-3. However, the molecular determinants of HIV-1 which modulate cell surface Tim-3 levels have yet to be determined. Here, we demonstrate that HIV-1 Vpu downregulates Tim-3 from the surface of infected primary CD4+ T cells, thus attenuating HIV-1-induced upregulation of Tim-3. We also provide evidence that the transmembrane domain of Vpu is required for Tim-3 downregulation. Using immunofluorescence microscopy, we determined that Vpu is in close proximity to Tim-3 and alters its subcellular localization by directing it to Rab 5-positive (Rab 5+) vesicles and targeting it for sequestration within the trans- Golgi network (TGN). Intriguingly, Tim-3 knockdown and Tim-3 blockade increased HIV-1 replication in primary CD4+ T cells, thereby suggesting that Tim-3 expression might represent a natural immune mechanism limiting viral spread.IMPORTANCE HIV infection modulates the surface expression of Tim-3, but the molecular determinants remain poorly understood. Here, we show that HIV-1 Vpu downregulates Tim-3 from the surface of infected primary CD4+ T cells through its transmembrane domain and alters its subcellular localization. Tim-3 blockade increases HIV-1 replication, suggesting a potential negative role of this protein in viral spread that is counteracted by Vpu.


Assuntos
Linfócitos T CD4-Positivos/virologia , Regulação para Baixo , Receptor Celular 2 do Vírus da Hepatite A/metabolismo , Proteínas do Vírus da Imunodeficiência Humana/metabolismo , Proteínas Virais Reguladoras e Acessórias/metabolismo , Membrana Celular/metabolismo , Regulação da Expressão Gênica , Células HEK293 , HIV-1/metabolismo , Células HeLa , Humanos , Interferon beta/metabolismo , RNA Interferente Pequeno/metabolismo , Rede trans-Golgi/metabolismo
5.
Methods Mol Biol ; 2440: 91-97, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35218534

RESUMO

Examining protein-protein interactions provides critical insight into numerous human diseases and infections. Here we describe a protocol for bimolecular fluorescence complementation, which can be used to directly visualize and characterize intracellular protein-protein interactions and ascertain their localization using fluorescence microscopy.


Assuntos
Mapeamento de Interação de Proteínas , Fluorescência , Humanos , Proteínas Luminescentes/genética , Microscopia de Fluorescência/métodos , Mapeamento de Interação de Proteínas/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA