Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
Nucleic Acids Res ; 51(4): 1583-1599, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36727438

RESUMO

Inefficient endosomal escape remains the primary barrier to the broad application of oligonucleotide therapeutics. Liver uptake after systemic administration is sufficiently robust that a therapeutic effect can be achieved but targeting extrahepatic tissues remains challenging. Prior attempts to improve oligonucleotide activity using small molecules that increase the leakiness of endosomes have failed due to unacceptable toxicity. Here, we show that the well-tolerated and orally bioavailable synthetic sphingolipid analog, SH-BC-893, increases the activity of antisense oligonucleotides (ASOs) and small interfering RNAs (siRNAs) up to 200-fold in vitro without permeabilizing endosomes. SH-BC-893 treatment trapped endocytosed oligonucleotides within extra-lysosomal compartments thought to be more permeable due to frequent membrane fission and fusion events. Simultaneous disruption of ARF6-dependent endocytic recycling and PIKfyve-dependent lysosomal fusion was necessary and sufficient for SH-BC-893 to increase non-lysosomal oligonucleotide levels and enhance their activity. In mice, oral administration of SH-BC-893 increased ASO potency in the liver by 15-fold without toxicity. More importantly, SH-BC-893 enabled target RNA knockdown in the CNS and lungs of mice treated subcutaneously with cholesterol-functionalized duplexed oligonucleotides or unmodified ASOs, respectively. Together, these results establish the feasibility of using a small molecule that disrupts endolysosomal trafficking to improve the activity of oligonucleotides in extrahepatic tissues.


Assuntos
Endossomos , Oligonucleotídeos , Animais , Camundongos , Oligonucleotídeos/metabolismo , Endossomos/genética , Endocitose/fisiologia , Transporte Biológico , Oligonucleotídeos Antissenso/genética , RNA Interferente Pequeno/genética
2.
Biochem Biophys Res Commun ; 718: 149981, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-38735134

RESUMO

In animal cells, vacuoles are absent, but can be induced by diseases and drugs. While phosphoinositides are critical for membrane trafficking, their role in the formation of these vacuoles remains unclear. The immunosuppressive KRP203/Mocravimod, which antagonizes sphingosine-1-phosphate receptors, has been identified as having novel multimodal activity against phosphoinositide kinases. However, the impact of this novel KRP203 activity is unknown. Here, we show that KRP203 disrupts the spatial organization of phosphoinositides and induces extensive vacuolization in tumor cells and immortalized fibroblasts. The KRP203-induced vacuoles are primarily from endosomes, and augmented by inhibition of PIKFYVE and VPS34. Conversely, overexpression of PTEN decreased KRP203-induced vacuole formation. Furthermore, V-ATPase inhibition completely blunted KRP203-induced vacuolization, pointing to a critical requirement of the endosomal maturation process. Importantly, nearly a half of KRP203-induced vacuoles are significantly decorated with PI4P, a phosphoinositide typically enriched at the plasma membrane and Golgi. These results suggest a model that noncanonical spatial reorganization of phosphoinositides by KRP203 alters the endosomal maturation process, leading to vacuolization. Taken together, this study reveals a previously unrecognized bioactivity of KRP203 as a vacuole-inducing agent and its unique mechanism of phosphoinositide modulation, providing a new insight of phosphoinositide regulation into vacuolization-associated diseases and their molecular pathologies.


Assuntos
Endossomos , PTEN Fosfo-Hidrolase , Fosfatidilinositóis , Vacúolos , Vacúolos/metabolismo , Vacúolos/efeitos dos fármacos , Endossomos/metabolismo , Endossomos/efeitos dos fármacos , Humanos , Fosfatidilinositóis/metabolismo , Animais , PTEN Fosfo-Hidrolase/metabolismo , PTEN Fosfo-Hidrolase/genética , Fosfatidilinositol 3-Quinases/metabolismo , Classe III de Fosfatidilinositol 3-Quinases/metabolismo , Classe III de Fosfatidilinositol 3-Quinases/genética , Camundongos , Morfolinas/farmacologia , ATPases Vacuolares Próton-Translocadoras/metabolismo , ATPases Vacuolares Próton-Translocadoras/antagonistas & inibidores , ATPases Vacuolares Próton-Translocadoras/genética , Citoplasma/metabolismo , Células HeLa , Aminopiridinas , Compostos Heterocíclicos com 3 Anéis
3.
FASEB J ; 37(11): e23224, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37779389

RESUMO

A wealth of data has consistently demonstrated that a diverse faculty maximizes productivity and innovation in the research enterprise and increases the persistence and success of groups that are underrepresented in STEM. While the diversity of students in graduate programs has steadily increased, faculty diversity, particularly in the biomedical sciences, continues to remain relatively flat. Several issues contribute to this mismatch between the pipeline and the professoriate including biases in search and hiring practices, lack of equity and equal opportunities for individuals from underrepresented backgrounds, and unwelcoming campus climates that lead to marginalization and isolation in academic life. A comprehensive approach that addresses these challenges is necessary for institutions of higher education to achieve their faculty diversity goals and create a climate where individuals from all groups feel welcomed and succeed. This article focuses on the first step in this approach-diversifying faculty recruitment through adopting search practices that generate an applicant pool that matches national availability, ensures equity in evaluation and hiring practices, and promotes inclusion and belonging in the hiring experience. These strategies have been recently used at the University of California, Irvine's School of Biological Sciences and while the long-term impact remains unknown, short-term outcomes in recruitment and hiring have demonstrated significant improvement over previous years.


Assuntos
Diversidade Cultural , Grupos Minoritários , Humanos , Grupos Minoritários/educação , Docentes , Estudantes , Instituições Acadêmicas
4.
J Am Soc Nephrol ; 34(7): 1191-1206, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37022133

RESUMO

SIGNIFICANCE STATEMENT: Endocytosis, recycling, and degradation of proteins are essential functions of mammalian cells, especially for terminally differentiated cells with limited regeneration rates and complex morphology, such as podocytes. To improve our understanding on how disturbances of these trafficking pathways are linked to podocyte depletion and slit diaphragm (SD) injury, the authors explored the role of the small GTPase Rab7, which is linked to endosomal, lysosomal, and autophagic pathways, using as model systems mice and Drosophila with podocyte-specific or nephrocyte-specific loss of Rab7, and a human podocyte cell line depleted for Rab7. Their findings point to maturation and fusion events during endolysosomal and autophagic maturation as key processes for podocyte homeostasis and function and identify altered lysosomal pH values as a putative novel mechanism for podocytopathies. BACKGROUND: Endocytosis, recycling, and degradation of proteins are essential functions of mammalian cells, especially for terminally differentiated cells with limited regeneration rates, such as podocytes. How disturbances within these trafficking pathways may act as factors in proteinuric glomerular diseases is poorly understood. METHODS: To explore how disturbances in trafficking pathways may act as factors in proteinuric glomerular diseases, we focused on Rab7, a highly conserved GTPase that controls the homeostasis of late endolysosomal and autophagic processes. We generated mouse and Drosophila in vivo models lacking Rab7 exclusively in podocytes or nephrocytes, and performed histologic and ultrastructural analyses. To further investigate Rab7 function on lysosomal and autophagic structures, we used immortalized human cell lines depleted for Rab7. RESULTS: Depletion of Rab7 in mice, Drosophila , and immortalized human cell lines resulted in an accumulation of diverse vesicular structures resembling multivesicular bodies, autophagosomes, and autoendolysosomes. Mice lacking Rab7 developed a severe and lethal renal phenotype with early-onset proteinuria and global or focal segmental glomerulosclerosis, accompanied by an altered distribution of slit diaphragm proteins. Remarkably, structures resembling multivesicular bodies began forming within 2 weeks after birth, prior to the glomerular injuries. In Drosophila nephrocytes, Rab7 knockdown resulted in the accumulation of vesicles and reduced slit diaphragms. In vitro , Rab7 knockout led to similar enlarged vesicles and altered lysosomal pH values, accompanied by an accumulation of lysosomal marker proteins. CONCLUSIONS: Disruption within the final common pathway of endocytic and autophagic processes may be a novel and insufficiently understood mechanism regulating podocyte health and disease.


Assuntos
Glomérulos Renais , Podócitos , Animais , Camundongos , Humanos , Glomérulos Renais/patologia , Podócitos/metabolismo , Endossomos , Drosophila , Rim , Mamíferos
5.
Mol Cell Proteomics ; 18(3): 408-422, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30482847

RESUMO

The anti-neoplastic sphingolipid analog SH-BC-893 starves cancer cells to death by down-regulating cell surface nutrient transporters and blocking lysosomal trafficking events. These effects are mediated by the activation of protein phosphatase 2A (PP2A). To identify putative PP2A substrates, we used quantitative phosphoproteomics to profile the temporal changes in protein phosphorylation in FL5.12 cells following incubation with SH-BC-893 or the specific PP2A inhibitor LB-100. These analyses enabled the profiling of more than 15,000 phosphorylation sites, of which 958 sites on 644 proteins were dynamically regulated. We identified 114 putative PP2A substrates including several nutrient transporter proteins, GTPase regulators (e.g. Agap2, Git1), and proteins associated with actin cytoskeletal remodeling (e.g. Vim, Pxn). To identify SH-BC-893-induced cell signaling events that disrupt lysosomal trafficking, we compared phosphorylation profiles in cells treated with SH-BC-893 or C2-ceramide, a non-vacuolating sphingolipid that does not impair lysosomal fusion. These analyses combined with functional assays uncovered the differential regulation of Akt and Gsk3b by SH-BC-893 (vacuolating) and C2-ceramide (non-vacuolating). Dynamic phosphoproteomics of cells treated with compounds affecting PP2A activity thus enabled the correlation of cell signaling with phenotypes to rationalize their mode of action.


Assuntos
Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Fosfoproteínas/análise , Piperazinas/farmacologia , Proteína Fosfatase 2/metabolismo , Proteômica/métodos , Esfingolipídeos/farmacologia , Animais , Linhagem Celular Tumoral , Regulação da Expressão Gênica/efeitos dos fármacos , Camundongos , Fosforilação , Transdução de Sinais/efeitos dos fármacos , Esfingosina/análogos & derivados , Esfingosina/farmacologia
6.
J Cell Sci ; 131(12)2018 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-29848659

RESUMO

Endogenous sphingolipids (ceramide) and related synthetic molecules (FTY720, SH-BC-893) reduce nutrient access by decreasing cell surface expression of a subset of nutrient transporter proteins. Here, we report that these sphingolipids disrupt endocytic recycling by inactivating the small GTPase ARF6. Consistent with reported roles for ARF6 in maintaining the tubular recycling endosome, MICAL-L1-positive tubules were lost from sphingolipid-treated cells. We propose that ARF6 inactivation may occur downstream of PP2A activation since: (1) sphingolipids that fail to activate PP2A did not reduce ARF6-GTP levels; (2) a structurally unrelated PP2A activator disrupted tubular recycling endosome morphology and transporter localization; and (3) overexpression of a phosphomimetic mutant of the ARF6 GEF GRP1 prevented nutrient transporter loss. ARF6 inhibition alone was not toxic; however, the ARF6 inhibitors SecinH3 and NAV2729 dramatically enhanced the killing of cancer cells by SH-BC-893 without increasing toxicity to peripheral blood mononuclear cells, suggesting that ARF6 inactivation contributes to the anti-neoplastic actions of sphingolipids. Taken together, these studies provide mechanistic insight into how ceramide and sphingolipid-like molecules limit nutrient access and suppress tumor cell growth and survival.


Assuntos
Fatores de Ribosilação do ADP/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Nutrientes/metabolismo , Esfingolipídeos/metabolismo , Fator 6 de Ribosilação do ADP , Fatores de Ribosilação do ADP/antagonistas & inibidores , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Sistema y+ de Transporte de Aminoácidos/metabolismo , Linhagem Celular Tumoral , Proteínas do Citoesqueleto/metabolismo , Endossomos/efeitos dos fármacos , Endossomos/metabolismo , Cloridrato de Fingolimode/farmacologia , Cadeia Pesada da Proteína-1 Reguladora de Fusão/metabolismo , Células HeLa , Humanos , Proteínas com Domínio LIM/metabolismo , Células MCF-7 , Proteínas dos Microfilamentos , Oxigenases de Função Mista , Esfingolipídeos/farmacologia
7.
Bioconjug Chem ; 31(3): 673-684, 2020 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-31986014

RESUMO

Targeting the inability of cancerous cells to adapt to metabolic stress is a promising alternative to conventional cancer chemotherapy. FTY720 (Gilenya), an FDA-approved drug for the treatment of multiple sclerosis, has recently been shown to inhibit cancer progression through the down-regulation of essential nutrient transport proteins, selectively starving cancer cells to death. However, the clinical use of FTY720 for cancer therapy is prohibited because of its capability of inducing immunosuppression (lymphopenia) and bradycardia when phosphorylated upon administration. A prodrug to specifically prevent phosphorylation during circulation, hence avoiding bradycardia and lymphopenia, was synthesized by capping its hydroxyl groups with polyethylene glycol (PEG) via an acid-cleavable ketal linkage. Improved aqueous solubility was also accomplished by PEGylation. The prodrug reduces to fully potent FTY720 upon cellular uptake and induces metabolic stress in cancer cells. Enhanced release of FTY720 at a mildly acidic endosomal pH and the ability to substantially down-regulate cell-surface nutrient transporter proteins in leukemia cells only by an acid-cleaved drug were confirmed. Importantly, the prodrug demonstrated nearly identical efficacy to FTY720 in an animal model of BCR-Abl-driven leukemia without inducing bradycardia or lymphopenia in vivo, highlighting its potential clinical value. The prodrug formulation of FTY720 demonstrates the utility of precisely engineering a drug to avoid undesirable effects by tackling specific molecular mechanisms as well as a financially favorable alternative to new drug development. A multitude of existing cancer therapeutics may be explored for prodrug formulation to avoid specific side effects and preserve or enhance therapeutic efficacy.


Assuntos
Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Cloridrato de Fingolimode/química , Cloridrato de Fingolimode/farmacologia , Leucemia/tratamento farmacológico , Polietilenoglicóis/química , Acetais/química , Antineoplásicos/química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Humanos , Concentração de Íons de Hidrogênio , Leucemia/patologia , Fosforilação
8.
Bioorg Med Chem Lett ; 29(18): 2681-2685, 2019 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-31383588

RESUMO

Inspired by the cytotoxicity of perphenazine toward cancer cells and its ability to activate the serine/threonine protein phosphatase 2A (PP2A), we prepared series of ether-carbon linked analogs of a constrained synthetic sphingolipid analog 3, known for its cytotoxicity, nutrient transporter down-regulation and vacuolation properties, incorporating the tricyclic neuroleptics phenoxazine and phenothiazine to represent hybrid structures with possible synergistic cytotoxic activity. While the original activity of the lead compound 3 was diminished by fusion with the phenoxazine or phenothiazine tethered moieties, the corresponding 3-pyridyltetryl ether analog 10 showed cytotoxicity and nutrient transporter down-regulation similar to the lead compound 3, although it separated these PP2A-dependent phenotypes from that of vacuolation.


Assuntos
Antineoplásicos/farmacologia , Inibidores Enzimáticos/farmacologia , Oxazinas/farmacologia , Fenotiazinas/farmacologia , Proteína Fosfatase 2/antagonistas & inibidores , Esfingolipídeos/farmacologia , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Desenho de Fármacos , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Camundongos , Estrutura Molecular , Oxazinas/química , Fenotiazinas/química , Proteína Fosfatase 2/metabolismo , Esfingolipídeos/química , Relação Estrutura-Atividade
9.
J Cell Sci ; 129(23): 4424-4435, 2016 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-27793976

RESUMO

The class III phosphoinositide 3-kinase (PI3K) Vps34 (also known as PIK3C3 in mammals) produces phosphatidylinositol 3-phosphate [PI(3)P] on both early and late endosome membranes to control membrane dynamics. We used Vps34-deficient cells to delineate whether Vps34 has additional roles in endocytic trafficking. In Vps34-/- mouse embryonic fibroblasts (MEFs), transferrin recycling and EEA1 membrane localization were unaffected despite elevated Rab5-GTP levels. Strikingly, a large increase in Rab7-GTP levels, an accumulation of enlarged late endosomes, and decreased EGFR degradation were observed in Vps34-deficient cells. The hyperactivation of Rab7 in Vps34-deficient cells stemmed from the failure to recruit the Rab7 GTPase-activating protein (GAP) Armus (also known as TBC1D2), which binds to PI(3)P, to late endosomes. Protein-lipid overlay and liposome-binding assays reveal that the putative pleckstrin homology (PH) domain in Armus can directly bind to PI(3)P. Elevated Rab7-GTP led to the failure of intraluminal vesicle (ILV) formation and lysosomal maturation. Rab7 silencing and Armus overexpression alleviated the vacuolization seen in Vps34-deficient cells. Taken together, these results demonstrate that Vps34 has a previously unknown role in regulating Rab7 activity and late endosomal trafficking.


Assuntos
Classe III de Fosfatidilinositol 3-Quinases/metabolismo , Endocitose , Proteínas Ativadoras de GTPase/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Animais , Autofagia , Biocatálise , Endossomos/metabolismo , Endossomos/ultraestrutura , Fibroblastos/metabolismo , Células HeLa , Humanos , Lisossomos/metabolismo , Lisossomos/ultraestrutura , Camundongos Knockout , Fosfatos de Fosfatidilinositol/metabolismo , Transporte Proteico , Serina-Treonina Quinases TOR/metabolismo , Vacúolos/metabolismo , Vacúolos/ultraestrutura , proteínas de unión al GTP Rab7
10.
J Immunol ; 194(7): 3065-78, 2015 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-25740947

RESUMO

Class switch DNA recombination (CSR) is central to the maturation of the Ab response because it diversifies Ab effector functions. Like somatic hypermutation, CSR requires activation-induced cytidine deaminase (AID), whose expression is restricted to B cells, as induced by CD40 engagement or dual TLR-BCR engagement (primary CSR-inducing stimuli). By constructing conditional knockout Igh(+/C)γ(1-cre)Rab7(fl/fl) mice, we identified a B cell-intrinsic role for Rab7, a small GTPase involved in intracellular membrane functions, in mediating AID induction and CSR. Igh(+/C)γ(1-cre)Rab7(fl/fl) mice displayed normal B and T cell development and were deficient in Rab7 only in B cells undergoing Igh(C)γ(1-cre) Iγ1-Sγ1-Cγ1-cre transcription, as induced--like Igh germline Iγ1-Sγ1-Cγ1 and Iε-Sε-Cε transcription--by IL-4 in conjunction with a primary CSR-inducing stimulus. These mice could not mount T-independent or T-dependent class-switched IgG1 or IgE responses while maintaining normal IgM levels. Igh(+/C)γ(1-cre)Rab7(fl/fl) B cells showed, in vivo and in vitro, normal proliferation and survival, normal Blimp-1 expression and plasma cell differentiation, as well as intact activation of the noncanonical NF-κB, p38 kinase, and ERK1/2 kinase pathways. They, however, were defective in AID expression and CSR in vivo and in vitro, as induced by CD40 engagement or dual TLR1/2-, TLR4-, TLR7-, or TLR9-BCR engagement. In Igh(+/C)γ(1-cre)Rab7(fl/fl) B cells, CSR was rescued by enforced AID expression. These findings, together with our demonstration that Rab7-mediated canonical NF-κB activation, as critical to AID induction, outline a novel role of Rab7 in signaling pathways that lead to AID expression and CSR, likely by promoting assembly of signaling complexes along intracellular membranes.


Assuntos
Formação de Anticorpos , Linfócitos B/imunologia , Linfócitos B/metabolismo , Citidina Desaminase/genética , Regulação da Expressão Gênica , Switching de Imunoglobulina , Linfócitos T/imunologia , Proteínas rab de Ligação ao GTP/metabolismo , Animais , Especificidade de Anticorpos/imunologia , Antígenos/imunologia , Linfócitos B/citologia , Diferenciação Celular/genética , Diferenciação Celular/imunologia , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/imunologia , Ordem dos Genes , Loci Gênicos , Células Germinativas/metabolismo , Imunoglobulina E/biossíntese , Imunoglobulina E/genética , Imunoglobulina E/imunologia , Imunoglobulina G/biossíntese , Imunoglobulina G/genética , Imunoglobulina G/imunologia , Cadeias Pesadas de Imunoglobulinas/genética , Cadeias gama de Imunoglobulina/genética , Interleucina-4/metabolismo , Ativação Linfocitária/imunologia , Camundongos , Camundongos Transgênicos , NF-kappa B/metabolismo , Linfócitos T/citologia , Linfócitos T/metabolismo , Transcrição Gênica , Proteínas rab de Ligação ao GTP/deficiência , Proteínas rab de Ligação ao GTP/genética , proteínas de unión al GTP Rab7
11.
Biol Cell ; 108(11): 324-337, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27406702

RESUMO

BACKGROUND INFORMATION: Vacuolation of the central nervous system (CNS) is observed in patients with transmissible spongiform encephalopathy, HIV-related encephalopathy and some inherited diseases, but the underlying cellular mechanisms remain poorly understood. Mice lacking the mahogunin ring finger-1 (MGRN1) E3 ubiquitin ligase develop progressive, widespread spongiform degeneration of the CNS. MGRN1 ubiquitinates and regulates tumour susceptibility gene 101 (TSG101), a central component of the endosomal trafficking machinery. As loss of MGRN1 is predicted to cause partial TSG101 loss-of-function, we hypothesised that CNS vacuolation in Mgrn1 null mice may be caused by the accumulation of multi-cisternal endosome-like 'class E' vacuolar protein sorting (vps) compartments similar to those observed in Tsg101-depleted cells in culture. RESULTS: To test this hypothesis, Tsg101 was deleted from mature oligodendroglia in vivo. This resulted in severe spongiform encephalopathy, histopathologically similar to that observed in Mgrn1 null mutant mice but with a more rapid onset. Vacuoles in the brains of Tsg101-deleted and Mgrn1 mutant mice labelled with endosomal markers, consistent with an endosomal origin. Vacuoles in the brains of mice inoculated with Rocky Mountain Laboratory (RML) prions did not label with these markers, indicating a different origin, consistent with previously published studies that indicate RML prions have a primary effect on neurons and cause vacuolation in an MGRN1-independent manner. Oligodendroglial deletion of Rab7, which mediates late endosome-to-lysosome trafficking and autophagosome-lysosome fusion, did not cause spongiform change. CONCLUSIONS: Our data suggest that the formation of multi-cisternal 'class E' vps endosomal structures in oligodendroglia leads to vacuolation. SIGNIFICANCE: This work provides the first evidence that disrupting multi-vesicular body formation in oligodendroglia can cause white matter vacuolation and demyelination. HIV is known to hijack the endosomal sorting machinery, suggesting that HIV infection of the CNS may also act through this pathway to cause encephalopathy.


Assuntos
Encéfalo/patologia , Proteínas de Ligação a DNA/genética , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Deleção de Genes , Oligodendroglia/patologia , Doenças Priônicas/genética , Fatores de Transcrição/genética , Animais , Encéfalo/metabolismo , Camundongos , Camundongos Knockout , Oligodendroglia/metabolismo , Doenças Priônicas/patologia , Ubiquitina-Proteína Ligases/genética , Proteínas rab de Ligação ao GTP/genética , proteínas de unión al GTP Rab7
12.
Bioorg Med Chem ; 24(18): 4390-4397, 2016 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-27475534

RESUMO

Constrained analogs containing a 2-hydroxymethylpyrrolidine core of the natural sphingolipids sphingosine, sphinganine, N,N-dimethylsphingosine and N-acetyl variants of sphingosine and sphinganine (C2-ceramide and dihydro-C2-ceramide) were synthesized and evaluated for their ability to down-regulate nutrient transporter proteins and trigger cytoplasmic vacuolation in mammalian cells. In cancer cells, the disruptions in intracellular trafficking produced by these sphingolipids lead to cancer cell death by starvation. Structure activity studies were conducted by varying the length of the hydrocarbon chain, the degree of unsaturation and the presence or absence of an aryl moiety on the appended chains, and stereochemistry at two stereogenic centers. In general, cytotoxicity was positively correlated with nutrient transporter down-regulation and vacuolation. This study was intended to identify structural and functional features in lead compounds that best contribute to potency, and to develop chemical biology tools that could be used to isolate the different protein targets responsible for nutrient transporter loss and cytoplasmic vacuolation. A molecule that produces maximal vacuolation and transporter loss is expected to have the maximal anti-cancer activity and would be a lead compound.


Assuntos
Morte Celular/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Hidrocarbonetos/química , Proteínas de Membrana Transportadoras/metabolismo , Esfingolipídeos/farmacologia , Vacúolos/efeitos dos fármacos , Animais , Humanos , Esfingolipídeos/química , Estereoisomerismo , Relação Estrutura-Atividade
13.
Biochem J ; 470(3): e17-9, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-26341486

RESUMO

Rapidly proliferating cancer cells increase flux through anabolic pathways to build the mass necessary to support cell division. Imported amino acids and glucose lie at the apex of the anabolic pyramid. Consistent with this, elevated expression of nutrient transporter proteins is characteristic of aggressive and highly malignant cancers. Because tumour cells are more dependent than their normal neighbours on accelerated nutrient import, these up-regulated transporters could be excellent targets for selective anti-cancer therapies. A study by Babu et al. in a recent issue of the Biochemical Journal definitively shows that SLC6A14 (where SLC is solute carrier) is one such cancer-specific amino acid transporter. Although mice completely lacking SLC6A14 are viable and exhibit normal mammary gland development, these animals are highly resistant to mammary tumour initiation and progression driven by potent oncogenes. Because SLC6A14 is essential for tumour growth yet dispensable for normal development and tissue maintenance, small molecules that block amino acid import through this transporter could be effective and selective anti-cancer agents, particularly as components of rational drug combinations.


Assuntos
Sistemas de Transporte de Aminoácidos , Proliferação de Células , Deleção de Genes , Neoplasias Mamárias Experimentais/metabolismo , Proteínas de Neoplasias/metabolismo , Proteínas da Membrana Plasmática de Transporte de Neurotransmissores , Transdução de Sinais , Animais , Feminino
14.
Immunol Rev ; 236: 95-109, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20636811

RESUMO

Intense research efforts over the last two decades have focused on establishing the significance of apoptotic signaling in adaptive immunity. Without doubt, caspase-dependent apoptosis plays vital roles in many immune processes, including lymphocyte development, positive and negative selection, homeostasis, and self-tolerance. Cell biologists have developed new insights into cell death, establishing that other modes of cell death exist, such as programmed necrosis and type II/autophagic cell death. Additionally, immunologists have identified a number of immunological processes that are highly dependent upon cellular autophagy, including antigen presentation, lymphocyte development and function, pathogen recognition and destruction, and inflammatory regulation. In this review, we provide detailed mechanistic descriptions of cellular autophagy and programmed necrosis induced in response to death receptor ligation, including methods to identify them, and compare and contrast these processes with apoptosis. The crosstalk between these three processes is emphasized as newly formulated evidence suggests that this interplay is vital for efficient T-cell clonal expansion. This new evidence indicates that in addition to apoptosis, autophagy and programmed necrosis play significant roles in the termination of T-cell-dependent immune responses.


Assuntos
Apoptose/imunologia , Autofagia/imunologia , Transdução de Sinais/imunologia , Linfócitos T/imunologia , Animais , Homeostase/imunologia , Humanos , Modelos Imunológicos , Necrose/imunologia
15.
iScience ; 27(7): 110265, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39027368

RESUMO

Patients with tuberous sclerosis complex (TSC) develop multi-organ disease manifestations, with kidney angiomyolipomas (AML) and cysts being one of the most common and deadly. Early and regular AML/cyst detection and monitoring are vital to lower TSC patient morbidity and mortality. However, the current standard of care involves imaging-based methods that are not designed for rapid screening, posing challenges for early detection. To identify potential diagnostic screening biomarkers of AML/cysts, we performed global untargeted metabolomics in blood samples from 283 kidney AML/cyst-positive or -negative TSC patients using mass spectrometry. We identified 7 highly sensitive chemical features, including octanoic acid, that predict kidney AML/cysts in TSC patients. Patients with elevated octanoic acid have lower levels of very long-chain fatty acids (VLCFAs), suggesting that dysregulated peroxisome activity leads to overproduction of octanoic acid via VLCFA oxidation. These data highlight AML/cysts blood biomarkers for TSC patients and offers valuable metabolic insights into the disease.

16.
bioRxiv ; 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37693406

RESUMO

The stability of tight junctions (TJs) between endothelial cells (ECs) is essential to maintain blood-brain barrier (BBB) function in the healthy brain. Following ischemic stroke, TJ strand dismantlement due to protein degradation leads to BBB dysfunction, yet the mechanisms driving this process are poorly understood. Here, we show that endothelial-specific ablation of Rab7a, a small GTPase that regulates endolysosomal protein degradation, reduces stroke-induced TJ strand disassembly resulting in decreased paracellular BBB permeability and improved neuronal outcomes. Two pro-inflammatory cytokines, TNFα and IL1ß, but not glucose and oxygen deprivation, induce Rab7a activation via Ccz1 in brain ECs in vitro, leading to increased TJ protein degradation and impaired paracellular barrier function. Silencing Rab7a in brain ECs in vitro reduces cytokine-driven endothelial barrier dysfunction by suppressing degradation of a key BBB TJ protein, Claudin-5. Thus, Rab7a activation by inflammatory cytokines promotes degradation of select TJ proteins leading to BBB dysfunction after ischemic stroke.

17.
Cancer Cell ; 4(6): 422-4, 2003 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-14706333

RESUMO

Cellular proteins are degraded within two distinct compartments: the proteasome and the lysosome. Alterations in proteasomal degradation can contribute to carcinogenesis. In contrast, alterations in autophagic protein degradation through the lysosome have not been linked to cancer. Now two reports demonstrate that the autophagic gene, Beclin 1, is a haploinsufficient tumor suppressor gene. These new data suggest that autophagic degradation provides an important mechanism to prevent cellular transformation.


Assuntos
Autofagia/fisiologia , Cisteína Endopeptidases/metabolismo , Lisossomos/metabolismo , Complexos Multienzimáticos/metabolismo , Proteínas/metabolismo , Animais , Apoptose/fisiologia , Proteínas Reguladoras de Apoptose , Proteína Beclina-1 , Divisão Celular , Transformação Celular Neoplásica/metabolismo , Humanos , Proteínas de Membrana , Neoplasias/etiologia , Neoplasias/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Complexo de Endopeptidases do Proteassoma , Desnaturação Proteica/fisiologia
18.
Biochem J ; 439(2): 299-311, 2011 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-21767261

RESUMO

Cancer cells are hypersensitive to nutrient limitation because oncogenes constitutively drive glycolytic and TCA (tricarboxylic acid) cycle intermediates into biosynthetic pathways. As the anaplerotic reactions that replace these intermediates are fueled by imported nutrients, the cancer cell's ability to generate ATP becomes compromised under nutrient-limiting conditions. In addition, most cancer cells have defects in autophagy, the catabolic process that provides nutrients from internal sources when external nutrients are unavailable. Normal cells, in contrast, can adapt to the nutrient stress that kills cancer cells by becoming quiescent and catabolic. In the present study we show that FTY720, a water-soluble sphingolipid drug that is effective in many animal cancer models, selectively starves cancer cells to death by down-regulating nutrient transporter proteins. Consistent with a bioenergetic mechanism of action, FTY720 induced homoeostatic autophagy. Cells were protected from FTY720 by cell-permeant nutrients or by reducing nutrient demand, but blocking apoptosis was ineffective. Importantly, AAL-149, a FTY720 analogue that lacks FTY720's dose-limiting toxicity, also triggered transporter loss and killed patient-derived leukaemias while sparing cells isolated from normal donors. As they target the metabolic profile of cancer cells rather than specific oncogenic mutations, FTY720 analogues such as AAL-149 should be effective against many different tumour types, particularly in combination with drugs that inhibit autophagy.


Assuntos
Proteínas de Transporte/metabolismo , Regulação para Baixo/efeitos dos fármacos , Esfingolipídeos/farmacologia , Animais , Linhagem Celular , Camundongos , Camundongos Endogâmicos BALB C , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas em Tandem
19.
J Biol Chem ; 285(22): 16814-21, 2010 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-20363736

RESUMO

The small GTPase Rab7 promotes fusion events between late endosomes and lysosomes. Rab7 activity is regulated by extrinsic signals, most likely via effects on its guanine nucleotide exchange factor (GEF) or GTPase-activating protein (GAP). Based on their homology to the yeast proteins that regulate the Ypt7 GTP binding state, TBC1D15, and mammalian Vps39 (mVps39) have been suggested to function as the Rab7 GAP and GEF, respectively. We developed an effector pull-down assay to test this model. TBC1D15 functioned as a Rab7 GAP in cells, reducing Rab7 binding to its effector protein RILP, fragmenting the lysosome, and conferring resistance to growth factor withdrawal-induced cell death. In a cellular context, TBC1D15 GAP activity was selective for Rab7. TBC1D15 overexpression did not inhibit transferrin internalization or recycling, Rab7-independent processes that require Rab4, Rab5, and Rab11 activation. TBC1D15 was thus renamed Rab7-GAP. Contrary to expectations for a Rab7 GEF, mVps39 induced lysosomal clustering without increasing Rab7 GTP binding. Moreover, a dominant-negative mVps39 mutant fragmented the lysosome and promoted growth factor independence without decreasing Rab7-GTP levels. These findings suggest that a protein other than mVps39 serves as the Rab7 GEF. In summary, although only TBC1D15/Rab7-GAP altered Rab7-GTP levels, both Rab7-GAP and mVps39 regulate lysosomal morphology and play a role in maintaining growth factor dependence.


Assuntos
Proteínas Ativadoras de GTPase/química , Fatores de Troca do Nucleotídeo Guanina/química , Peptídeos e Proteínas de Sinalização Intracelular/química , Proteínas de Transporte Vesicular/química , Proteínas rab de Ligação ao GTP/metabolismo , Animais , Proteínas Relacionadas à Autofagia , Linhagem Celular , Sobrevivência Celular , Guanosina Trifosfato/metabolismo , Células HeLa , Humanos , Lisossomos/metabolismo , Camundongos , Modelos Biológicos , Ligação Proteica , Transferrina/metabolismo , proteínas de unión al GTP Rab7
20.
J Biol Chem ; 285(16): 11818-26, 2010 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-20172858

RESUMO

The BCL-2 family members BAK and BAX are required for apoptosis and trigger mitochondrial outer membrane permeabilization (MOMP). Here we identify a MOMP-independent function of BAK as a required factor for long-chain ceramide production in response to pro-apoptotic stress. UV-C irradiation of wild-type (WT) cells increased long-chain ceramides; blocking ceramide generation prevented caspase activation and cell death, demonstrating that long-chain ceramides play a key role in UV-C-induced apoptosis. In contrast, UV-C irradiation did not increase long-chain ceramides in BAK and BAX double knock-out cells. Notably, this was not specific to the cell type (baby mouse kidney cells, hematopoietic) nor the apoptotic stimulus employed (UV-C, cisplatin, and growth factor withdrawal). Importantly, long-chain ceramide generation was dependent on the presence of BAK, but not BAX. However, ceramide generation was independent of the known downstream actions of BAK in apoptosis (MOMP or caspase activation), suggesting a novel role for BAK in apoptosis. Finally, enzymatic assays identified ceramide synthase as the mechanism by which BAK regulates ceramide metabolism. There was no change in CerS expression at the message or protein level, indicating regulation at the post-translational level. Moreover, CerS activity in BAK KO microsomes can be reactivated upon addition of BAK-containing microsomes. The data presented indicate that ceramide-induced apoptosis is dependent upon BAK and identify a novel role for BAK during apoptosis. By establishing a unique role for BAK in long-chain ceramide metabolism, these studies further demonstrate that the seemingly redundant proteins BAK and BAX have distinct mechanisms of action during apoptosis induction.


Assuntos
Apoptose/fisiologia , Ceramidas/biossíntese , Proteína Killer-Antagonista Homóloga a bcl-2/metabolismo , Animais , Apoptose/efeitos da radiação , Caspases/metabolismo , Células Cultivadas , Ceramidas/química , Camundongos , Membranas Mitocondriais/metabolismo , Oxirredutases/metabolismo , Permeabilidade , Estresse Fisiológico , Raios Ultravioleta , Proteína Killer-Antagonista Homóloga a bcl-2/deficiência , Proteína Killer-Antagonista Homóloga a bcl-2/genética , Proteína X Associada a bcl-2/deficiência , Proteína X Associada a bcl-2/genética , Proteína X Associada a bcl-2/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA