Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nano Lett ; 23(7): 2557-2562, 2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-36988192

RESUMO

Color centers in diamond are promising platforms for quantum technologies. Most color centers in diamond discovered thus far emit in the visible or near-infrared wavelength range, which are incompatible with long-distance fiber communication and unfavorable for imaging in biological tissues. Here, we report the experimental observation of a new color center that emits in the telecom O-band, which we observe in silicon-doped bulk single crystal diamonds and microdiamonds. Combining absorption and photoluminescence measurements, we identify a zero-phonon line at 1221 nm and phonon replicas separated by 42 meV. Using transient absorption spectroscopy, we measure an excited state lifetime of around 270 ps and observe a long-lived baseline that may arise from intersystem crossing to another spin manifold.

2.
Phys Rev Lett ; 130(16): 166902, 2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-37154648

RESUMO

Neutral silicon vacancy centers (SiV^{0}) in diamond are promising candidates for quantum applications; however, stabilizing SiV^{0} requires high-purity, boron-doped diamond, which is not a readily available material. Here, we demonstrate an alternative approach via chemical control of the diamond surface. We use low-damage chemical processing and annealing in a hydrogen environment to realize reversible and highly stable charge state tuning in undoped diamond. The resulting SiV^{0} centers display optically detected magnetic resonance and bulklike optical properties. Controlling the charge state tuning via surface termination offers a route for scalable technologies based on SiV^{0} centers, as well as charge state engineering of other defects.

3.
Phys Rev Lett ; 125(23): 237402, 2020 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-33337180

RESUMO

Neutral silicon vacancy (SiV^{0}) centers in diamond are promising candidates for quantum networks because of their excellent optical properties and long spin coherence times. However, spin-dependent fluorescence in such defects has been elusive due to poor understanding of the excited state fine structure and limited off-resonant spin polarization. Here we report the realization of optically detected magnetic resonance and coherent control of SiV^{0} centers at cryogenic temperatures, enabled by efficient optical spin polarization via previously unreported higher-lying excited states. We assign these states as bound exciton states using group theory and density functional theory. These bound exciton states enable new control schemes for SiV^{0} as well as other emerging defect systems.

4.
Science ; 361(6397): 60-63, 2018 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-29976820

RESUMO

Engineering coherent systems is a central goal of quantum science. Color centers in diamond are a promising approach, with the potential to combine the coherence of atoms with the scalability of a solid-state platform. We report a color center that shows insensitivity to environmental decoherence caused by phonons and electric field noise: the neutral charge state of silicon vacancy (SiV0). Through careful materials engineering, we achieved >80% conversion of implanted silicon to SiV0 SiV0 exhibits spin-lattice relaxation times approaching 1 minute and coherence times approaching 1 second. Its optical properties are very favorable, with ~90% of its emission into the zero-phonon line and near-transform-limited optical linewidths. These combined properties make SiV0 a promising defect for quantum network applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA