Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Biomed Inform ; 131: 104097, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35643272

RESUMO

BACKGROUND: Observational studies incorporating real-world data from multiple institutions facilitate study of rare outcomes or exposures and improve generalizability of results. Due to privacy concerns surrounding patient-level data sharing across institutions, methods for performing regression analyses distributively are desirable. Meta-analysis of institution-specific estimates is commonly used, but has been shown to produce biased estimates in certain settings. While distributed regression methods are increasingly available, methods for analyzing count outcomes are currently limited. Count data in practice are commonly subject to overdispersion, exhibiting greater variability than expected under a given statistical model. OBJECTIVE: We propose a novel computational method, a one-shot distributed algorithm for quasi-Poisson regression (ODAP), to distributively model count outcomes while accounting for overdispersion. METHODS: ODAP incorporates a surrogate likelihood approach to perform distributed quasi-Poisson regression without requiring patient-level data sharing, only requiring sharing of aggregate data from each participating institution. ODAP requires at most three rounds of non-iterative communication among institutions to generate coefficient estimates and corresponding standard errors. In simulations, we evaluate ODAP under several data scenarios possible in multi-site analyses, comparing ODAP and meta-analysis estimates in terms of error relative to pooled regression estimates, considered the gold standard. In a proof-of-concept real-world data analysis, we similarly compare ODAP and meta-analysis in terms of relative error to pooled estimatation using data from the OneFlorida Clinical Research Consortium, modeling length of stay in COVID-19 patients as a function of various patient characteristics. In a second proof-of-concept analysis, using the same outcome and covariates, we incorporate data from the UnitedHealth Group Clinical Discovery Database together with the OneFlorida data in a distributed analysis to compare estimates produced by ODAP and meta-analysis. RESULTS: In simulations, ODAP exhibited negligible error relative to pooled regression estimates across all settings explored. Meta-analysis estimates, while largely unbiased, were increasingly variable as heterogeneity in the outcome increased across institutions. When baseline expected count was 0.2, relative error for meta-analysis was above 5% in 25% of iterations (250/1000), while the largest relative error for ODAP in any iteration was 3.59%. In our proof-of-concept analysis using only OneFlorida data, ODAP estimates were closer to pooled regression estimates than those produced by meta-analysis for all 15 covariates. In our distributed analysis incorporating data from both OneFlorida and the UnitedHealth Group Clinical Discovery Database, ODAP and meta-analysis estimates were largely similar, while some differences in estimates (as large as 13.8%) could be indicative of bias in meta-analytic estimates. CONCLUSIONS: ODAP performs privacy-preserving, communication-efficient distributed quasi-Poisson regression to analyze count outcomes using data stored within multiple institutions. Our method produces estimates nearly matching pooled regression estimates and sometimes more accurate than meta-analysis estimates, most notably in settings with relatively low counts and high outcome heterogeneity across institutions.


Assuntos
COVID-19 , Algoritmos , COVID-19/epidemiologia , Humanos , Funções Verossimilhança , Modelos Estatísticos , Análise de Regressão
2.
Sci Rep ; 11(1): 19647, 2021 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-34608222

RESUMO

Clinical research networks (CRNs), made up of multiple healthcare systems each with patient data from several care sites, are beneficial for studying rare outcomes and increasing generalizability of results. While CRNs encourage sharing aggregate data across healthcare systems, individual systems within CRNs often cannot share patient-level data due to privacy regulations, prohibiting multi-site regression which requires an analyst to access all individual patient data pooled together. Meta-analysis is commonly used to model data stored at multiple institutions within a CRN but can result in biased estimation, most notably in rare-event contexts. We present a communication-efficient, privacy-preserving algorithm for modeling multi-site zero-inflated count outcomes within a CRN. Our method, a one-shot distributed algorithm for performing hurdle regression (ODAH), models zero-inflated count data stored in multiple sites without sharing patient-level data across sites, resulting in estimates closely approximating those that would be obtained in a pooled patient-level data analysis. We evaluate our method through extensive simulations and two real-world data applications using electronic health records: examining risk factors associated with pediatric avoidable hospitalization and modeling serious adverse event frequency associated with a colorectal cancer therapy. In simulations, ODAH produced bias less than 0.1% across all settings explored while meta-analysis estimates exhibited bias up to 12.7%, with meta-analysis performing worst in settings with high zero-inflation or low event rates. Across both applied analyses, ODAH estimates had less than 10% bias for 18 of 20 coefficients estimated, while meta-analysis estimates exhibited substantially higher bias. Relative to existing methods for distributed data analysis, ODAH offers a highly accurate, computationally efficient method for modeling multi-site zero-inflated count data.


Assuntos
Algoritmos , Atenção à Saúde/estatística & dados numéricos , Modelos Estatísticos , Big Data , Mineração de Dados/métodos , Registros Eletrônicos de Saúde/estatística & dados numéricos , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA