Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Future Microbiol ; 18: 15-25, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36353984

RESUMO

Aim: The antimicrobial and antibiofilm activities of the antihistamine desloratadine against multidrug-resistant (MDR) Acinetobacter baumannii were evaluated. Results: Desloratadine inhibited 90% bacterial growth at a concentration of 64 µg/ml. The combination of desloratadine with meropenem reduced the MIC by twofold in the planktonic state and increased the antibiofilm activity by eightfold. Survival curves showed that combinations of these drugs were successful in eradicating all bacterial cells within 16 h. Scanning electron microscopy also confirmed a synergistic effect in imparting a harmful effect on the cellular structure of MDR A. baumannii. An in vivo model showed significant protection of up to 83% of Caenorhabditis elegans infected with MDR A. baumannii. Conclusion: Our results indicate that repositioning of desloratadine may be a safe and low-cost alternative as an antimicrobial and antibiofilm agent for the treatment of MDR A. baumannii infections.


Assuntos
Acinetobacter baumannii , Anti-Infecciosos , Antibacterianos/farmacologia , Testes de Sensibilidade Microbiana , Anti-Infecciosos/farmacologia , Biofilmes , Farmacorresistência Bacteriana Múltipla
2.
Microbiol Res ; 261: 127074, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35636093

RESUMO

The emergence of resistance to antibiotics has become a global challenge as far as the control and treatment of nosocomial infections are concerned. Compared to the planktonic state, biofilms generally confer more resistance to antibiotics and may become a potential source of infection. Researchers are thus focused on developing novel drugs not as vulnerable as the current ones to bacterial resistance mechanisms and also able to target bacteria in biofilms. Natural products, especially those derived from plant sources, have substantiated significant medicinal activity with unique properties, making them perfect candidates for these much-needed therapeutics. Despite being a vast resource of antimicrobial molecules, limitations, including the low concentration of the extracted active compound and bioavailability, challenge the clinical application of medicinal plants to combat these infections. Nanotechnology through green synthesis is one of the strategies to explore the medicinal potential of plants. Research has established the promising outcome of this method in antibiofilm activity, in addition to improved drug delivery, targeting, and pharmacokinetic profiles. This review summarized the current knowledge on the potentialities of plant products as antibiotic adjuvants to restore the therapeutic activity of drugs. We also discussed biotechnological advances in medicinal plants to fight and eradicate biofilm-forming microorganisms.


Assuntos
Biofilmes , Plantas Medicinais , Antibacterianos/farmacologia , Bactérias , Hospitais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA