Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Am Acad Dermatol ; 91(5): 855-862, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39025264

RESUMO

BACKGROUND: UV-A radiation contributes to photoaging/photocarcinogenesis by generating inflammation and oxidative damage. Current photoprotective strategies are limited by the availability/utilization of UV-A filters, highlighting an unmet need. Cannabidiol (CBD), having anti-inflammatory/antioxidant properties via regulation of nuclear erythroid 2-related factor, heme oxygenase 1, and peroxisome proliferator-activated receptor gamma, could potentially mitigate damage from UV-A exposure. OBJECTIVE/METHODS: This is a prospective, single-center, pilot clinical trial (NCT05279495). Nineteen participants applied nano-CBD (nCBD) or vehicle (VC) cream to randomized, blinded buttock sites twice daily for 14 days; then, the treated sites were irradiated with ≤3× UV-A minimal erythema dose. After 24 hours, punch biopsies were obtained for histology, immunohistochemistry, and real-time polymerase chain reaction. RESULTS: At 24 hours, 21% of participants had less observed erythema on CBD-treated skin than on VC skin. Histologically, nCBD-treated skin had reduced UV-A-induced epidermal hyperplasia than VC (P = .01). Immunohistochemistry detected reduced cytoplasmic/nuclear 8-oxoguanine glycosylase 1 staining in nCBD-treated skin compared with VC (P < .01). Quantitative mtDNA polymerase chain reaction demonstrated that UV-A-induced deletion of ND4 (proxy:4977 bp deletion; P = .003) and ND1 (proxy:3895 bp deletion; P = .002) was significantly reduced by in vivo nCBD treatment compared with VC. LIMITATIONS: Small sample size is this study's limitation. CONCLUSION: Topically applied nCBD cream reduced UV-A-induced formation of a frequent mutagenic nuclear DNA base lesion and protected against mtDNA mutations associated with UV-A-induced skin aging. To our knowledge, this trial is the first to identify UV-protective capacity of CBD-containing topicals in humans.


Assuntos
Canabidiol , Dano ao DNA , DNA Mitocondrial , Creme para a Pele , Raios Ultravioleta , Humanos , Projetos Piloto , Canabidiol/administração & dosagem , Raios Ultravioleta/efeitos adversos , Feminino , Masculino , Pessoa de Meia-Idade , DNA Mitocondrial/efeitos dos fármacos , Estudos Prospectivos , Adulto , Creme para a Pele/administração & dosagem , Dano ao DNA/efeitos dos fármacos , Dano ao DNA/efeitos da radiação , Idoso , Envelhecimento da Pele/efeitos dos fármacos , Envelhecimento da Pele/efeitos da radiação , Pele/patologia , Pele/efeitos dos fármacos , Pele/efeitos da radiação , Administração Cutânea , Nanocápsulas , Núcleo Celular/metabolismo , Núcleo Celular/efeitos dos fármacos , Eritema/etiologia , Eritema/prevenção & controle , Eritema/tratamento farmacológico
2.
Emerg Infect Dis ; 29(6): 1240-1243, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37141616

RESUMO

We performed 2 surveys during 2022 to estimate point prevalences of SARS-CoV-2 infection compared with overall seroprevalence in Sweden. Point prevalence was 1.4% in March and 1.5% in September. Estimated seroprevalence was >80%, including among unvaccinated children. Continued SARS-CoV-2 surveillance is necessary for detecting emerging, possibly more pathogenic variants.


Assuntos
COVID-19 , Criança , Humanos , COVID-19/epidemiologia , Prevalência , SARS-CoV-2 , Suécia/epidemiologia , Estudos Soroepidemiológicos
3.
Am J Physiol Heart Circ Physiol ; 325(5): H983-H997, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37624097

RESUMO

Severe cardiotoxic effects limit the efficacy of doxorubicin (DOX) as a chemotherapeutic agent. Activation of intracellular stress signaling networks, including p38 mitogen-activated protein kinase (MAPK), has been implicated in DOX-induced cardiotoxicity (DIC). However, the roles of the individual p38 isoforms in DIC remain incompletely elucidated. We recently reported that global p38δ deletion protected female but not male mice from DIC, whereas global p38γ deletion did not significantly modulate it. Here we studied the in vivo roles of p38α and p38ß in acute DIC. Male and female mice with cardiomyocyte-specific deletion of p38α or global deletion of p38ß and their wild-type counterparts were injected with DOX. Survival and health were tracked for 10 days postinjection. Cardiac function was assessed by echocardiography and electrocardiography and fibrosis by Picrosirius red staining. Expression and activation of signaling proteins and inflammatory markers were measured by Western blot, phosphorylation array, and chemokine/cytokine array. Global p38ß deletion significantly aggravated DIC and worsened cardiac electrical and mechanical function deterioration in female mice. Mechanistically, DIC in p38ß-null female mice correlated with increased autophagy, sustained hyperactivation of proapoptotic JNK signaling, as well as remodeling of a myocardial inflammatory environment. In contrast, cardiomyocyte-specific deletion of p38α improved survival of DOX30-treated male mice 5 days posttreatment but did not influence cardiac function in DOX-treated male or female mice. Our data highlight the sex- and isoform-specific roles of p38α and p38ß MAPKs in DOX-induced cardiac injury and suggest a novel in vivo function of p38ß in protecting female mice from DIC.NEW & NOTEWORTHY We show that p38α and p38ß have distinct in vivo functions in a murine model of acute DIC. Specifically, although conditional cardiomyocyte-specific p38α deletion exhibited mild cardioprotective effects in male mice, p38ß deletion exacerbated the DOX cardiotoxicity in female mice. Our findings caution against employing pyridinyl imidazole inhibitors that target both p38α and p38ß isoforms as a cardioprotective strategy against DIC. Such an approach could have undesirable sex-dependent effects, including attenuating p38ß-dependent cardioprotection in females.


Assuntos
Cardiotoxicidade , Miócitos Cardíacos , Masculino , Feminino , Camundongos , Animais , Miócitos Cardíacos/metabolismo , Cardiotoxicidade/metabolismo , Antraciclinas , Antibióticos Antineoplásicos , Transdução de Sinais , Doxorrubicina/toxicidade , Camundongos Knockout , Apoptose , Estresse Oxidativo
4.
J Enzyme Inhib Med Chem ; 38(1): 2205042, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37184042

RESUMO

Twenty-five azole compounds (P1-P25) were synthesised using regioselective base-metal catalysed and microwave-assisted approaches, fully characterised by high-resolution mass spectrometry (HRMS), nuclear magnetic resonance (NMR), and infrared spectra (IR) analyses, and evaluated for anticancer, anti-tyrosinase, and anti-oxidant activities in silico and in vitro. P25 exhibited potent anticancer activity against cells of four skin cancer (SC) lines, with selectivity for melanoma (A375, SK-Mel-28) or non-melanoma (A431, SCC-12) SC cells over non-cancerous HaCaT-keratinocytes. Clonogenic, scratch-wound, and immunoblotting assay data were consistent with anti-proliferative results, expression profiling therewith implicating intrinsic and extrinsic apoptosis activation. In a mushroom tyrosinase inhibition assay, P14 was most potent among the compounds (half-maximal inhibitory concentration where 50% of cells are dead, IC50 15.9 µM), with activity greater than arbutin and kojic acid. Also, P6 exhibited noteworthy free radical-scavenging activity. Furthermore, in silico docking and absorption, distribution, metabolism, excretion, and toxicity (ADMET) simulations predicted prominent-phenotypic actives to engage diverse cancer/hyperpigmentation-related targets with relatively high affinities. Altogether, promising early-stage hits were identified - some with multiple activities - warranting further hit-to-lead optimisation chemistry with further biological evaluations, towards identifying new skin-cancer and skin-pigmentation renormalising agents.


Assuntos
Monofenol Mono-Oxigenase , Neoplasias Cutâneas , Humanos , Antioxidantes/farmacologia , Estrutura Molecular , Inibidores Enzimáticos/química , Simulação de Acoplamento Molecular , Simulação por Computador , Neoplasias Cutâneas/tratamento farmacológico , Azóis , Pirazóis
5.
Am J Physiol Heart Circ Physiol ; 319(4): H775-H786, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32822209

RESUMO

The efficacy of an anthracycline antibiotic doxorubicin (DOX) as a chemotherapeutic agent is limited by dose-dependent cardiotoxicity. DOX is associated with activation of intracellular stress signaling pathways including p38 MAPKs. While previous studies have implicated p38 MAPK signaling in DOX-induced cardiac injury, the roles of the individual p38 isoforms, specifically, of the alternative isoforms p38γ and p38δ, remain uncharacterized. We aimed to determine the potential cardioprotective effects of p38γ and p38δ genetic deletion in mice subjected to acute DOX treatment. Male and female wild-type (WT), p38γ-/-, p38δ-/-, and p38γ-/-δ-/- mice were injected with 30 mg/kg DOX and their survival was tracked for 10 days. During this period, cardiac function was assessed by echocardiography and electrocardiography and fibrosis by Picro Sirius Red staining. Immunoblotting was performed to assess the expression of signaling proteins and markers linked to autophagy. Significantly improved survival was observed in p38δ-/- female mice post-DOX relative to WT females, but not in p38γ-/- or p38γ-/-δ-/- male or female mice. The improved survival in DOX-treated p38δ-/- females was associated with decreased fibrosis, increased cardiac output and LV diameter relative to DOX-treated WT females, and similar to saline-treated controls. Structural and echocardiographic parameters were either unchanged or worsened in all other groups. Increased autophagy, as suggested by increased LC3-II level, and decreased mammalian target of rapamycin activation was also observed in DOX-treated p38δ-/- females. p38δ plays a crucial role in promoting DOX-induced cardiotoxicity in female mice by inhibiting autophagy. Therefore, p38δ targeting could be a potential cardioprotective strategy in anthracycline chemotherapy.NEW & NOTEWORTHY This study for the first time identifies the sex-specific roles of the alternative p38γ and p38δ MAPK isoforms in promoting doxorubicin (DOX) cardiotoxicity. We show that p38δ and p38γ/δ systemic deletion was cardioprotective in female but not in male mice. Cardiac structure and function were preserved in DOX-treated p38δ-/- females and autophagy marker was increased.


Assuntos
Doxorrubicina , Cardiopatias/prevenção & controle , Proteína Quinase 13 Ativada por Mitógeno/deficiência , Miocárdio/enzimologia , Animais , Autofagia/efeitos dos fármacos , Cardiotoxicidade , Modelos Animais de Doenças , Feminino , Fibrose , Técnicas de Inativação de Genes , Cardiopatias/enzimologia , Cardiopatias/genética , Cardiopatias/patologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Associadas aos Microtúbulos/metabolismo , Proteína Quinase 12 Ativada por Mitógeno/deficiência , Proteína Quinase 12 Ativada por Mitógeno/genética , Proteína Quinase 13 Ativada por Mitógeno/genética , Miocárdio/patologia , Fatores Sexuais , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Função Ventricular Esquerda/efeitos dos fármacos
6.
Int J Mol Sci ; 20(7)2019 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-30934690

RESUMO

Activation and/or upregulated expression of p38δ are demonstrated in human skin malignancies including cutaneous squamous cell carcinoma, suggesting a role for p38δ in skin carcinogenesis. We previously reported that mice with germline deletion of the p38δ gene are significantly protected from chemical skin carcinogenesis. Here, we investigated the effects of cell-selective targeted ablation of p38δ in keratinocytes and in immune (myeloid) cells on skin tumor development in a two-stage 7,12-dimethylbenz(a)anthracene (DMBA)/12-O-tetradecanoylphorbol-13-acetate (TPA) chemical mouse skin carcinogenesis model. Conditional keratinocyte-specific p38δ ablation (p38δ-cKO∆K) did not influence the latency, incidence, or multiplicity of chemically-induced skin tumors, but led to increased tumor volume in females during the TPA promotion stage, and reduced malignant progression in males and females relative to their wild-type counterparts. In contrast, conditional myeloid cell-specific p38δ deletion (p38δ-cKO∆M) inhibited DMBA/TPA-induced skin tumorigenesis in male but not female mice. Thus, tumor onset was delayed, and tumor incidence, multiplicity, and volume were reduced in p38δ-cKO∆M males compared with control wild-type males. Moreover, the percentage of male mice with malignant tumors was decreased in the p38δ-cKO∆M group relative to their wild-type counterparts. Collectively, these results reveal that cell-specific p38δ targeting modifies susceptibility to chemical skin carcinogenesis in a context-, stage-, and sex-specific manner.


Assuntos
Proteína Quinase 13 Ativada por Mitógeno/metabolismo , Caracteres Sexuais , Neoplasias Cutâneas/enzimologia , Neoplasias Cutâneas/patologia , 9,10-Dimetil-1,2-benzantraceno , Animais , Carcinogênese/patologia , Carcinoma de Células Escamosas/enzimologia , Carcinoma de Células Escamosas/patologia , Proliferação de Células , Citocinas/metabolismo , Progressão da Doença , Feminino , Deleção de Genes , Mediadores da Inflamação/metabolismo , Queratinócitos/enzimologia , Masculino , Camundongos Knockout , Células Mieloides/metabolismo , Estadiamento de Neoplasias , Fenótipo , Pele/patologia , Acetato de Tetradecanoilforbol
7.
J Drugs Dermatol ; 17(9): 933-940, 2018 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-30235378

RESUMO

Seborrheic keratosis (SK) is the most common skin tumor seen by dermatologists in everyday practice. Although the lesions are mostly benign, many patients still elect to have asymptomatic SK removed. The historical standards of treatment are cryosurgery and electrocautery, two surgical options that are effective at lesion removal but have high rates of postoperative adverse events such as treatment-site scarring and pigmentary alterations. The cosmetic outcomes of SK treatment modalities are of keen interest to dermatologists, as the American population becomes increasingly more diverse. In this article, the inclusion of darker Fitzpatrick skin types into clinical studies investigating post-treatment side effects of SK therapy is reviewed. The recent approval of a 40% hydrogen peroxide topical formulation is discussed in light of these issues, and several non-invasive topical treatments that optimize cosmetic outcomes of SK lesion removal are highlighted. Finally, treatment strategies aimed at reducing cost and minimizing the burden of adverse sequelae are provided. J Drugs Dermatol. 2018;17(9):933-940.


Assuntos
Fármacos Dermatológicos/uso terapêutico , Peróxido de Hidrogênio/uso terapêutico , Hiperpigmentação/induzido quimicamente , Ceratose Seborreica/terapia , Administração Cutânea , Análise Custo-Benefício , Criocirurgia/economia , Criocirurgia/estatística & dados numéricos , Fármacos Dermatológicos/administração & dosagem , Fármacos Dermatológicos/efeitos adversos , Eletrocoagulação/economia , Eletrocoagulação/estatística & dados numéricos , Humanos , Peróxido de Hidrogênio/administração & dosagem , Peróxido de Hidrogênio/efeitos adversos
8.
Mol Carcinog ; 55(5): 563-74, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-25753147

RESUMO

p38δ expression and/or activity are increased in human cutaneous malignancies, including invasive squamous cell carcinoma (SCC) and head and neck SCC, but the role of p38δ in cutaneous carcinogenesis has not been well-defined. We have reported that mice with germline loss of p38δ exhibited a reduced susceptibility to skin tumor development compared with wild-type mice in the two-stage 7,12-dimethylbenz(a)anthracene (DMBA)/12-O-tetradecanoylphorbol-13-acetate (TPA) chemical skin carcinogenesis model. Here, we report that p38δ gene ablation inhibited the growth of tumors generated from v-ras(Ha) -transformed keratinocytes in skin orthografts to nude mice, indicating that keratinocyte-intrinsic p38δ is required for Ras-induced tumorigenesis. Gene expression profiling of v-ras(Ha) -transformed p38δ-null keratinocytes revealed transcriptional changes associated with cellular responses linked to tumor suppression, such as reduced proliferation and increased differentiation, cell adhesion, and cell communications. Notably, a short-term DMBA/TPA challenge, modeling the initial stages of chemical skin carcinogenesis treatment, elicited an enhanced inflammation in p38δ-null skin compared with skin of wild-type mice, as assessed by measuring the expression of pro-inflammatory cytokines, including IL-1ß, IL-6, IL-17, and TNFα. Additionally, p38δ-null skin and p38δ-null keratinocytes exhibited increased p38α activation and signaling in response to acute inflammatory challenges, suggesting a role for p38α in stimulating the elevated inflammatory response in p38δ-null skin during the initial phases of the DMBA/TPA treatment compared with similarly treated p38δ(+/+) skin. Altogether, our results indicate that p38δ signaling regulates skin carcinogenesis not only by keratinocyte cell-autonomous mechanisms, but also by influencing the interaction between between the epithelial compartment of the developing skin tumor and its stromal microenvironment.


Assuntos
Proteína Quinase 13 Ativada por Mitógeno/genética , Neoplasias Cutâneas/genética , Pele/patologia , Proteínas ras/genética , Animais , Benzo(a)Antracenos/toxicidade , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Transformação Celular Neoplásica/patologia , Inflamação/induzido quimicamente , Inflamação/genética , Inflamação/metabolismo , Camundongos , Camundongos Nus , Proteína Quinase 13 Ativada por Mitógeno/metabolismo , Pele/efeitos dos fármacos , Pele/metabolismo , Neoplasias Cutâneas/induzido quimicamente , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/patologia , Acetato de Tetradecanoilforbol/toxicidade , Proteínas ras/farmacologia
9.
Am J Physiol Cell Physiol ; 306(10): C899-909, 2014 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-24598361

RESUMO

Proline-rich protein tyrosine kinase 2 (Pyk2) is a member of the focal adhesion kinase family. We used Pyk2 knockout (Pyk2-KO) mice to study the role of Pyk2 in cutaneous wound repair. We report that the rate of wound closure was delayed in Pyk2-KO compared with control mice. To examine whether impaired wound healing of Pyk2-KO mice was caused by a keratinocyte cell-autonomous defect, the capacities of primary keratinocytes from Pyk2-KO and wild-type (WT) littermates to heal scratch wounds in vitro were compared. The rate of scratch wound repair was decreased in Pyk2-KO keratinocytes compared with WT cells. Moreover, cultured human epidermal keratinocytes overexpressing the dominant-negative mutant of Pyk2 failed to heal scratch wounds. Conversely, stimulation of Pyk2-dependent signaling via WT Pyk2 overexpression induced accelerated scratch wound closure and was associated with increased expression of matrix metalloproteinase (MMP)-1, MMP-9, and MMP-10. The Pyk2-stimulated increase in the rate of scratch wound repair was abolished by coexpression of the dominant-negative mutant of PKCδ and by GM-6001, a broad-spectrum inhibitor of MMP activity. These results suggest that Pyk2 is essential for skin wound reepithelialization in vivo and in vitro and that it regulates epidermal keratinocyte migration via a pathway that requires PKCδ and MMP functions.


Assuntos
Quinase 2 de Adesão Focal/genética , Queratinócitos/metabolismo , Proteína Quinase C-delta/metabolismo , Reepitelização/genética , Pele/metabolismo , Animais , Movimento Celular/efeitos dos fármacos , Células Cultivadas , Dipeptídeos/farmacologia , Quinase 2 de Adesão Focal/deficiência , Regulação da Expressão Gênica , Genes Dominantes , Humanos , Queratinócitos/citologia , Queratinócitos/efeitos dos fármacos , Masculino , Metaloproteinase 1 da Matriz/genética , Metaloproteinase 1 da Matriz/metabolismo , Metaloproteinase 10 da Matriz/genética , Metaloproteinase 10 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/genética , Metaloproteinase 9 da Matriz/metabolismo , Inibidores de Metaloproteinases de Matriz/farmacologia , Camundongos , Camundongos Knockout , Proteína Quinase C-delta/genética , Transdução de Sinais , Pele/efeitos dos fármacos , Pele/lesões
10.
Chem Biol Drug Des ; 103(1): e14418, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38230791

RESUMO

Melanoma and nonmelanoma skin cancers are among the most prevalent and most lethal forms of skin cancers. To identify new lead compounds with potential anticancer properties for further optimization, in vitro assays combined with in-silico target fishing and docking have been used to identify and further map out the antiproliferative and potential mode of action of molecules from a small library of compounds previously prepared in our laboratory. From screening these compounds in vitro against A375, SK-MEL-28, A431, and SCC-12 skin cancer cell lines, 35 displayed antiproliferative activities at the micromolar level, with the majority being primarily potent against the A431 and SCC-12 squamous carcinoma cell lines. The most active compounds 11 (A431: IC50 = 5.0 µM, SCC-12: IC50 = 2.9 µM, SKMEL-28: IC50 = 4.9 µM, A375: IC50 = 6.7 µM) and 13 (A431: IC50 = 5.0 µM, SCC-12: IC50 = 3.3 µM, SKMEL-28: IC50 = 13.8 µM, A375: IC50 = 17.1 µM), significantly and dose-dependently induced apoptosis of SCC-12 and SK-MEL-28 cells, as evidenced by the suppression of Bcl-2 and upregulation of Bax, cleaved caspase-3, caspase-9, and PARP protein expression levels. Both agents significantly reduced scratch wound healing, colony formation, and expression levels of deregulated cancer molecular targets including RSK/Akt/ERK1/2 and S6K1. In silico target prediction and docking studies using the SwissTargetPrediction web-based tool suggested that CDK8, CLK4, nuclear receptor ROR, tyrosine protein-kinase Fyn/LCK, ROCK1/2, and PARP, all of which are dysregulated in skin cancers, might be prospective targets for the two most active compounds. Further validation of these targets by western blot analyses, revealed that ROCK/Fyn and its associated Hedgehog (Hh) pathways were downregulated or modulated by the two lead compounds. In aggregate, these results provide a strong framework for further validation of the observed activities and the development of a more comprehensive structure-activity relationship through the preparation and biological evaluation of analogs.


Assuntos
Antineoplásicos , Melanoma , Neoplasias Cutâneas , Humanos , Melanoma/tratamento farmacológico , Melanoma/patologia , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Proteínas Hedgehog/metabolismo , Neoplasias Cutâneas/tratamento farmacológico , Apoptose , Relação Estrutura-Atividade , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Ensaios de Seleção de Medicamentos Antitumorais , Proliferação de Células , Linhagem Celular Tumoral , Estrutura Molecular , Quinases Associadas a rho/metabolismo
12.
Physiol Rep ; 11(8): e15672, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37102225

RESUMO

Abnormal heart rate variability (HRV) is commonly observed in cancer patients who have undergone targeted therapy and/or surgery, yet the effects of cancer itself on cardiac function remain underexplored. Specifically, there is limited knowledge about sex-specific manifestations of HRV in cancer patients. Transgenic mouse models are widely used to study different types of cancer. Here, we aimed to investigate the sex-specific effects of cancer on cardiac function using transgenic mouse models of pancreatic and liver cancers. This study used male and female transgenic mice with cancer and wild-type controls. Cardiac function was assessed by recording electrocardiograms in conscious mice. RR intervals were detected to determine HRV using time and frequency domain analyses. Histological analysis with Masson's trichrome staining was performed to determine structural changes. In females, increased HRV was observed in both pancreatic and liver cancer-bearing mice. In contrast, in males, increased HRV was observed only in the liver cancer group. Male pancreatic cancer mice demonstrated autonomic balance shift showing an increase in parasympathetic to sympathetic tone. The heart rate (HR) was higher in control and liver cancer male mice groups than in females. Histological analysis did not show significant sex differences but suggested a higher degree of remodeling in liver cancer mice than in control, specifically in the right atrium and left ventricle. This study revealed sex differences in cancer's HR modulation. Specifically, female cancer mice had lower median HR and higher HRV. These findings indicate that sex must be considered when using HRV as a cancer biomarker.


Assuntos
Neoplasias Hepáticas , Caracteres Sexuais , Masculino , Feminino , Camundongos , Animais , Sistema Nervoso Autônomo/fisiologia , Frequência Cardíaca/fisiologia , Modelos Animais de Doenças , Camundongos Transgênicos
13.
Nat Protoc ; 18(2): 374-395, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36411351

RESUMO

Genetic engineering and implantable bioelectronics have transformed investigations of cardiovascular physiology and disease. However, the two approaches have been difficult to combine in the same species: genetic engineering is applied primarily in rodents, and implantable devices generally require larger animal models. We recently developed several miniature cardiac bioelectronic devices suitable for mice and rats to enable the advantages of molecular tools and implantable devices to be combined. Successful implementation of these device-enabled studies requires microsurgery approaches that reliably interface bioelectronics to the beating heart with minimal disruption to native physiology. Here we describe how to perform an open thoracic surgical technique for epicardial implantation of wireless cardiac pacemakers in adult rats that has lower mortality than transvenous implantation approaches. In addition, we provide the methodology for a full biocompatibility assessment of the physiological response to the implanted device. The surgical implantation procedure takes ~40 min for operators experienced in microsurgery to complete, and six to eight surgeries can be completed in 1 d. Implanted pacemakers provide programmed electrical stimulation for over 1 month. This protocol has broad applications to harness implantable bioelectronics to enable fully conscious in vivo studies of cardiovascular physiology in transgenic rodent disease models.


Assuntos
Procedimentos Cirúrgicos Cardíacos , Marca-Passo Artificial , Animais , Camundongos , Ratos , Procedimentos Cirúrgicos Cardíacos/métodos
14.
Front Med (Lausanne) ; 9: 875517, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35646967

RESUMO

Cutaneous Squamous Cell Carcinoma (cSCC) represents the second most common type of skin cancer, which incidence is continuously increasing worldwide. Given its high frequency, cSCC represents a major public health problem. Therefore, to provide the best patients' care, it is necessary having a detailed understanding of the molecular processes underlying cSCC development, progression, and invasion. Extensive efforts have been made in developing new models allowing to study the molecular pathogenesis of solid tumors, including cSCC tumors. Traditionally, in vitro studies were performed with cells grown in a two-dimensional context, which, however, does not represent the complexity of tumor in vivo. In the recent years, new in vitro models have been developed aiming to mimic the three-dimensionality (3D) of the tumor, allowing the evaluation of tumor cell-cell and tumor-microenvironment interaction in an in vivo-like setting. These models include spheroids, organotypic cultures, skin reconstructs and organoids. Although 3D models demonstrate high potential to enhance the overall knowledge in cancer research, they lack systemic components which may be solved only by using animal models. Zebrafish is emerging as an alternative xenotransplant model in cancer research, offering a high-throughput approach for drug screening and real-time in vivo imaging to study cell invasion. Moreover, several categories of mouse models were developed for pre-clinical purpose, including xeno- and syngeneic transplantation models, autochthonous models of chemically or UV-induced skin squamous carcinogenesis, and genetically engineered mouse models (GEMMs) of cSCC. These models have been instrumental in examining the molecular mechanisms of cSCC and drug response in an in vivo setting. The present review proposes an overview of in vitro, particularly 3D, and in vivo models and their application in cutaneous SCC research.

15.
Am J Physiol Heart Circ Physiol ; 301(3): H975-83, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21666110

RESUMO

Proline-rich tyrosine kinase 2 (Pyk2) is a nonreceptor protein kinase regulated by intracellular Ca(2+), CaMK, and PKC and can be activated by different stress signals involved in heart failure. However, Pyk2 has not been investigated in the human heart, and the functional role of Pyk2 signaling at the whole heart level has not been elucidated. We hypothesize that Ca(2+)-dependent activation of Pyk2 is involved in cardiac electrophysiology. We examined the expression of Pyk2 in nonfailing versus ischemic and nonischemic failing human hearts (n = 6 hearts/group). To investigate Pyk2 function, we optically mapped perfused hearts from wild-type (WT; n = 7) and knockout (Pyk2(-/-); n = 8) mice during autonomic stimulation. Experiments were done in control mice and after 1 wk of transverse aortic constriction. We used the Illumina beadarray approach for transcriptional profiling of WT and Pyk2(-/-) mouse ventricles. Western blot analysis revealed a doubling of Pyk2 activation in nonischemic failing versus nonfailing human hearts. In mouse hearts, we observed a much higher probability of ventricular tachyarrhythmia during ACh perfusion in Pyk2(-/-) versus WT mice. Parasympathetic stimulation resulted in a dose-dependent decrease of atrial action potential duration (APD) in both WT and Pyk2(-/-) mice, whereas in ventricles it induced APD shortening in Pyk2(-/-) mice but not in WT mice. Deficiency of Pyk2 abolished ACh-induced prolongation of atrioventricular delay in Pyk2(-/-) mouse hearts but did not affect heart rate. Lower mRNA and protein levels of sarco(endo)plasmic reticulum Ca(2+)-ATPase 2 and higher mRNA levels of Na(+)/Ca(2+) exchanger 1 were detected in Pyk2(-/-) hearts compared with WT hearts. The transverse aortic constriction protocol did not change the phenotype. In conclusion, our results indicate a protective role of Pyk2 with respect to ventricular tachyarrhythmia during parasympathetic stimulation by regulation of gene expression related to Ca(2+) handling. We hypothesize that activation of Pyk2 in the human heart during heart failure may contribute to protection against arrhythmia.


Assuntos
Arritmias Cardíacas/enzimologia , Quinase 2 de Adesão Focal/metabolismo , Sistema de Condução Cardíaco/enzimologia , Frequência Cardíaca , Acetilcolina , Potenciais de Ação , Adulto , Idoso , Análise de Variância , Animais , Arritmias Cardíacas/etiologia , Arritmias Cardíacas/genética , Arritmias Cardíacas/fisiopatologia , Arritmias Cardíacas/prevenção & controle , Sistema Nervoso Autônomo/fisiopatologia , Cálcio/metabolismo , Canais de Cálcio/genética , Canais de Cálcio/metabolismo , Estimulação Cardíaca Artificial , Estudos de Casos e Controles , Modelos Animais de Doenças , Ativação Enzimática , Feminino , Quinase 2 de Adesão Focal/deficiência , Quinase 2 de Adesão Focal/genética , Regulação da Expressão Gênica , Genótipo , Sistema de Condução Cardíaco/fisiopatologia , Insuficiência Cardíaca/complicações , Insuficiência Cardíaca/enzimologia , Insuficiência Cardíaca/etiologia , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/fisiopatologia , Humanos , Cinética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , Perfusão , Fenótipo , Fosforilação , RNA Mensageiro/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/genética , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Trocador de Sódio e Cálcio/genética , Trocador de Sódio e Cálcio/metabolismo , Imagens com Corantes Sensíveis à Voltagem
16.
Physiol Rep ; 9(15): e14987, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34337891

RESUMO

INTRODUCTION: Doxorubicin (DOX), an anticancer drug used in chemotherapy, causes significant cardiotoxicity. This study aimed to investigate the effects of DOX on mouse cardiac electrophysiology, in conscious versus anesthetized state. METHODS: Male and female C57BL/6 mice were injected with saline, 20 or 30 mg/kg DOX. ECGs were recorded 5 days post-injection in conscious and isoflurane anesthetized states. ECGs were analyzed using a custom MATLAB software to determine P, PR, QRS, QTc, and RR intervals as well as heart rate variability (HRV). RESULTS: ECGs from the same mouse demonstrated P wave and QTc shortening as well as PR and RR interval prolongation in anesthetized versus conscious saline-treated mice. ECG response to DOX was also modulated by anesthesia. DOX treatment induced significant ECG modulation in female mice alone. While DOX20 treatment caused decrease in P and QRS durations, DOX30 treatment-induced QTc and RR interval prolongation in anesthetized but not in conscious female mice. These data suggest significant sex differences and anesthesia-induced differences in ECG response to DOX. HRV measured in time and frequency domains, a metric of arrhythmia susceptibility, was increased in DOX20-treated mice compared to saline. CONCLUSIONS: This study for the first time identifies that the ECG response to DOX is modulated by anesthesia. Furthermore, this response demonstrated stark sex differences. These findings could have significant implications in clinical diagnosis of DOX cardiotoxicity.


Assuntos
Anestesia/métodos , Antibióticos Antineoplásicos/toxicidade , Cardiotoxicidade/patologia , Estado de Consciência/fisiologia , Doxorrubicina/toxicidade , Eletrocardiografia/métodos , Animais , Cardiotoxicidade/etiologia , Feminino , Frequência Cardíaca , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fatores Sexuais
17.
Nat Biotechnol ; 39(10): 1228-1238, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34183859

RESUMO

Temporary cardiac pacemakers used in periods of need during surgical recovery involve percutaneous leads and externalized hardware that carry risks of infection, constrain patient mobility and may damage the heart during lead removal. Here we report a leadless, battery-free, fully implantable cardiac pacemaker for postoperative control of cardiac rate and rhythm that undergoes complete dissolution and clearance by natural biological processes after a defined operating timeframe. We show that these devices provide effective pacing of hearts of various sizes in mouse, rat, rabbit, canine and human cardiac models, with tailored geometries and operation timescales, powered by wireless energy transfer. This approach overcomes key disadvantages of traditional temporary pacing devices and may serve as the basis for the next generation of postoperative temporary pacing technology.


Assuntos
Implantes Absorvíveis , Marca-Passo Artificial , Animais , Bloqueio Atrioventricular/terapia , Modelos Animais de Doenças , Cães , Desenho de Equipamento , Humanos , Camundongos , Coelhos , Ratos , Tecnologia sem Fio
20.
Mol Cell Biol ; 24(18): 8167-83, 2004 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-15340077

RESUMO

Protein kinase Cdelta (PKCdelta) is an important regulator of apoptosis in epidermal keratinocytes. However, little information is available regarding the downstream kinases that mediate PKCdelta-dependent keratinocyte death. This study implicates p38delta mitogen-activated protein kinase (MAPK) as a downstream carrier of the PKCdelta-dependent death signal. We show that coexpression of PKCdelta with p38delta produces profound apoptosis-like morphological changes. These morphological changes are associated with increased sub-G(1) cell population, cytochrome c release, loss of mitochondrial membrane potential, caspase activation, and PARP cleavage. This death response is specific for the combination of PKCdelta and p38delta and is not produced by replacing PKCdelta with PKCalpha or p38delta with p38alpha. A constitutively active form of MEK6, an upstream activator of p38delta, can also produce cell death when coupled with p38delta. In addition, concurrent p38delta activation and extracellular signal-regulated kinase 1/2 (ERK1/2) inactivation are required for apoptosis. Regarding this inverse regulation, we describe a p38delta-ERK1/2 complex that may coordinate these changes in activity. We further show that this p38delta-ERK1/2 complex relocates into the nucleus in response to PKCdelta expression. This regulation appears to be physiological, since H(2)O(2), a known inducer of keratinocyte apoptosis, promotes identical PKCdelta and p38delta-ERK1/2 activity changes, leading to similar morphological changes.


Assuntos
Queratinócitos/citologia , Queratinócitos/enzimologia , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Proteína Quinase C/metabolismo , Apoptose/efeitos dos fármacos , Proteínas Quinases Dependentes de Cálcio-Calmodulina/genética , Proteínas Quinases Dependentes de Cálcio-Calmodulina/metabolismo , Núcleo Celular/enzimologia , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Ativação Enzimática , Humanos , Peróxido de Hidrogênio/farmacologia , Queratinócitos/efeitos dos fármacos , MAP Quinase Quinase 6 , Sistema de Sinalização das MAP Quinases , Proteína Quinase 1 Ativada por Mitógeno/genética , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 13 Ativada por Mitógeno , Proteína Quinase 3 Ativada por Mitógeno , Proteínas Quinases Ativadas por Mitógeno/genética , Fosforilação , Proteína Quinase C/química , Proteína Quinase C/genética , Proteína Quinase C-delta , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Frações Subcelulares/enzimologia , Transfecção , Tirosina/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA