Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Macromol Rapid Commun ; : e2400254, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38943240

RESUMO

Due to their unique mechanical and thermal properties, polyurethane foams are widely used in multiple fields of applications, including cushioning, thermal insulation or biomedical engineering. However, the way polyurethane foams are usually manufactured - via chemical foaming - produces samples where blowing and gelling occur at the same time, resulting in a morphology control achieved by trial and error processes. Here, a novel strategy is introduced to build model homogeneous polyurethane foams of controlled density with millimetric bubbles from liquid templates. By producing a polyurethane foam via physical bubbling without a catalyst and gently depositing a secondary foam containing catalyst on the top of this first foam, it is possible to take advantage of drainage mechanisms to trigger the solidification of the bottom foam. The characterization of the samples performed by X-ray microtomography allows to study quantitatively the structure of the final solid foam, at the global and at the local scale. Using the tomographic 3D images of the foam architectures, the superimposed foam technique introduced in this article is shown to be promising to produce foams with a good homogeneity along the vertical direction, with a density controlled by varying the concentration of catalyst in the secondary foam.

2.
Soft Matter ; 18(12): 2325-2331, 2022 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-35174372

RESUMO

The ability of liquid interfaces to shape slender elastic structures provides powerful strategies to control the architecture of mechanical self assemblies. However, elastocapillarity-driven intelligent design remains unexplored in more complex architected liquids - such as foams. Here we propose a model system which combines an assembly of bubbles and a slender elastic structure. Arrangements of soap bubbles in confined environments form well-defined periodic structures, dictated by Plateau's laws. We consider a 2D foam column formed in a container with square cross-section in which we introduce an elastomer ribbon, leading to architected structures whose geometry is guided by a competition between elasticity and capillarity. In this system, we quantify both experimentally and theoretically the equilibrium shapes, using X-ray micro-tomography and energy minimisation techniques. Beyond the understanding of the amplitude of the wavy elastic ribbon deformation, we provide a detailed analysis of the profile of the ribbon, and show that such a setup can be used to grant a shape to a UV-curable composite slender structure, as a foam-forming technique suitable to miniaturisation. In more general terms, this work provides a stepping stone towards an improved understanding of the interactions between liquid foams and slender structures.

3.
Phys Rev E ; 110(2-1): 024803, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39294956

RESUMO

Taking advantage of the competition between elasticity and capillarity has proven to be an efficient way to design structures by folding, bending, or assembling elastic objects in contact with liquid interfaces. Elastocapillary effects often occur at scales where gravity does not play an important role, such as in microfabrication processes. However, the influence of gravity can become significant at the desktop scale, which is relevant for numerous situations including model experiments used to provide a fundamental physics understanding, working at easily accessible scales. We focus here on the case of elastic ribbons placed in two-dimensional bubble columns: by introducing an elastic ribbon inside the central soap films of a staircase bubble structure in a square cross-section column, the deviation from Plateau's laws (capillarity-dominated case dictating the shape of usual foams) can be quantified as a function of the rigidity of the ribbon. For long ribbons, gravity cannot be neglected. We provide a detailed theoretical analysis of the ribbon profile, taking into account capillarity, elasticity, and gravity. We compute the total energy of the system and perform energy minimization under constraints, using Lagrangian mechanics. The model is then validated via a comparison with experiments with three different ribbon thicknesses.

4.
ACS Nano ; 18(23): 15067-15083, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38804165

RESUMO

Processes of water condensation and desublimation on solid surfaces are ubiquitous in nature and essential for various industrial applications, which are crucial for their performance. Despite their significance, these processes are not well understood due to the lack of methods that can provide insight at the nanolevel into the very first stages of phase transitions. Taking advantage of synchrotron grazing-incidence wide-angle X-ray scattering (GIWAXS) and environmental scanning electron microscopy (ESEM), two pathways of the frosting process from supersaturated vapors were studied in real time for substrates with different wettabilities ranging from highly hydrophilic to superhydrophobic. Within GIWAXS, a fully quantitative structural and orientational characterization of the undergoing phase transition reveals the information on degree of crystallinity of the new phase and determines the ordering at the surfaces and inside the films at the initial stages of water/ice nucleation from vapor onto the substrates. The diversity of frosting scenarios, including direct desublimation from the vapor and two-stage condensation-freezing processes, was observed by both GIWAXS and ESEM for different combinations of substrate wettability and vapor supersaturations. The classical nucleation theory straightforwardly predicts the pathway of the phase transition for hydrophobic and superhydrophobic substrates. The case of hydrophilic substrates is more intricate because the barriers in Gibbs free energy for nucleating both liquid and solid embryos are close to each other and comparable to thermal energy kBT. At that end, classical nucleation theory allows concluding a relation between contact angles for ice and water embryos on the basis of the observed frosting pathway.

5.
J Colloid Interface Sci ; 628(Pt A): 1044-1057, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36162176

RESUMO

HYPOTHESIS: The morphology of ordinary macro-emulsions is controlled by their high interfacial energies, i.e., by capillarity, leading to well-known structural features which can be tuned only over a narrow range. We claim here that a more explicit control over a much wider range of morphologies can be obtained by producing "elastocapillary emulsions" in which interfacial elasticity acts simultaneously with interfacial tension. EXPERIMENTS: We develop a model-system composed of PEG-in-PDMS emulsions, in which a catalyst diffuses from the PEG drops into the silicone matrix containing two reactive silicone polymers, which are cross-linked in a non-reactive silicone matrix to form a silicone gel of controlled thickness and mechanical properties on the drop surface. We characterise the cross-linking process of the gel in bulk and at the interface, and we analyse the skin growth kinetics. We then use the obtained understanding to produce emulsions with controlled elastocapillary interfaces using in-flow-chemistry in a purpose-designed millifluidic circuit. FINDINGS: We show that this approach allows to create interfaces over the full range of elastocapillary properties, and that very different emulsion morphologies can be generated depending on whether capillarity or elasticity dominates. These findings advance our fundamental understanding of the morphology of emulsions with complex interfaces, and they are of importance for the design of polymerised High Internal Phase Emulsions (polyHIPEs) with original structure/property relations. They will also be useful for the design of silicone capsules with fine-tuned mechanical properties.


Assuntos
Polímeros , Géis de Silicone , Elasticidade , Emulsões/química , Cinética , Polímeros/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA