Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 179
Filtrar
1.
Opt Lett ; 49(13): 3818-3821, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38950275

RESUMO

Photonic stepped-frequency radars based on optical frequency-shifting modulation have shown attractive properties such as wide bandwidth, centimeter range resolution, inherent frequency-time linearity with low spectrum spurs, and reduced system complexity. However, existing approaches typically exhibit meter- or centimeter-level radar range ambiguity, inversely proportional to the frequency step, due to the large frequency shift determined by acousto-optic or electro-optic (EO) modulators. Here, we overcome this limitation by injecting a narrowband, stepped-frequency signal into an optical frequency-shifting fiber cavity to achieve, for the first time, to our knowledge, a broadband photonic stepped-frequency radar with 150-m unambiguous detection and centimeter range resolution, surpassing the reported photonic- and electronic-based counterparts. The demonstrated approach effectively resolves the trade-off between ambiguity range and shifting frequency while maintaining the signal quality and bandwidth, bringing its practicality into reach for outdoor applications.

2.
Opt Express ; 31(3): 4268-4280, 2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36785399

RESUMO

Microwave photonics offers a promising solution for frequency converting microwave signals, however, demonstrations so far have either been bulky fibre implementations or lacked rejection of interfering image signals. Here, we demonstrate the first microwave photonic mixer with image rejection of broadband signals utilising chip-based stimulated Brillouin scattering and interferometry. We demonstrate frequency down-conversion of carrier frequencies ranging from 10 GHz-16 GHz, ultra-high image rejection for a single tone of up to 70 dB, and 100 MHz and 400 MHz wide analogue signals with 28.5 dB and 16 dB image rejection, respectively. Furthermore, we down-convert 200 Mb/s quadrature-phase-shift keying signals with an error vector magnitude as low as -9.6 dB when simultaneously present interfering image signals are suppressed by the mixer.

3.
Opt Express ; 29(16): 25697-25708, 2021 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-34614893

RESUMO

In this paper, we demonstrate a self-homodyne coherent system with a significantly narrowed effective linewidth using optical carrier recovery based on stimulated Brillouin scattering (SBS), employing only coarse path length matching. The effective linewidth of the SBS-based receiver system is reduced from 75 kHz to less than 2 kHz, which is estimated by Lorentzian fitting of power spectra, and confirmed by simulation results of the tolerance window length for phase noise compensation (PNC) with different linewidth. Both experimental and numerical studies on the tracking requirements on PNC algorithms confirm effective linewidth reduction to this level, and show a 32x relaxation of the phase recovery tracking window length. This highlights the potential to significantly reduce the computational complexity of PNC even in coarsely optimized SBS-based self-homodyne coherent systems, providing an alternative to using demanding ultra-low linewidth lasers.

4.
Opt Lett ; 46(2): 166-169, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33448979

RESUMO

Stimulated Brillouin scattering has great potential for wide-wavelength-range optical carrier recovery, as it can act as a parametrically defined narrowband gain filter. However, due to the dispersion of the Brillouin frequency shift, prior demonstrations have been limited in wavelength range. Here, we demonstrate that frequency modulating the pump light for a gain filter based on stimulated Brillouin scattering enables optical carrier recovery for a broad range of input wavelengths. We demonstrate highly selective (<150M H z bandwidth) amplification for optical carriers over an 18 nm wide wavelength range in the optical communications C-band, an ∼6× improvement over using an unmodulated pump. Measurements of the noise properties of these spectrally broadened gain filters, in both amplitude and phase, indicate the noise performance and SNR are maintained over a wide wavelength range. Our technique provides a potential solution for highly selective, wavelength agnostic optical carrier recovery.

5.
Opt Express ; 28(24): 36020-36032, 2020 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-33379706

RESUMO

True-time delays are important building blocks in modern radio frequency systems that can be implemented using integrated microwave photonics, enabling higher carrier frequencies, improved bandwidths, and a reduction in size, weight, and power. Stimulated Brillouin scattering (SBS) offers optically-induced continuously tunable delays and is thus ideal for applications that require programmable reconfiguration but previous approaches have been limited by large SBS gain requirements. Here, we overcome this limitation by using radio-frequency interferometry to enhance the Brillouin-induced delay applied to the optical sidebands that carry RF signals, while controlling the phase of the optical carrier with integrated silicon nitride microring resonators. We report a delay tunability over 600 ps exploiting an enhancement factor of 30, over a bandwidth of 1 GHz using less than 1 dB of Brillouin gain utilizing a photonic chip architecture based on Brillouin scattering and microring resonators.

6.
Opt Lett ; 45(19): 5571-5574, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-33001950

RESUMO

In this Letter, we report a chip-based photonic radio-frequency (RF) mixer with a maximum conversion gain of -9dB and image rejection ratio of 50 dB for 3.2 GHz to 13.2 GHz RF frequency range. This is achieved by the combined use of optical carrier suppression modulation and on-chip stimulated Brillouin scattering. These results will stimulate future implementations of integrated photonic RF mixers in complicated electromagnetic environments.

7.
Opt Lett ; 45(6): 1370-1373, 2020 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-32163968

RESUMO

In this Letter, we demonstrate a ${{\rm Si}_3}{{\rm N}_4}$Si3N4-chip-based photonic approach to generate versatile radio frequency (RF) waveforms with a large tuning range of repetition rates. The amplitude and phase of the RF-phase-modulated signal are spectrally manipulated to synthesize Fourier coefficients of the desired RF waveforms by controlling the resonance conditions and frequencies of ${{\rm Si}_3}{{\rm N}_4}$Si3N4 optical ring resonators. Full-duty-cycle triangular, square, and sawtooth waveforms with widely tunable repetition rates from 1 to 13 GHz were experimentally generated.

8.
Opt Lett ; 45(13): 3705-3708, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32630934

RESUMO

We present a high-performance radio frequency (RF) photonic bandpass filter enabled by combining on-chip Brillouin scattering with a suppressed carrier phase modulation scheme. We achieve a low RF loss of 5 dB and a large stopband rejection of more than 40 dB, which represents a significant improvement of 20 dB to the RF passband gain and 31 dB to the RF rejection ratio over traditional modulation schemes under the same optical power consumption. We further demonstrate filter reconfigurability including multiple passbands, wide frequency (1-20 GHz), and bandwidth tunability (30-350 MHz) without compromising the RF performance.

9.
Opt Express ; 27(22): 31727-31740, 2019 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-31684399

RESUMO

Microwave photonic bandpass filters (MPBPFs) are important building blocks in radio-frequency (RF) signal processing systems. However, most of the reported MPBPFs fail to satisfy the stringent real-world performance metrics, particularly low RF insertion loss. In this paper we report a novel MPBPF scheme using two cascaded integrated silicon nitride (Si3N4) ring resonators, achieving a high link gain in the RF filter passband. In this scheme, one ring operates at an optimal over-coupling condition to enable a strong RF passband whilst an auxiliary ring is used to increase the detected RF signal power via tuning the optical carrier-to-sideband ratio. The unique combination of these two techniques enables compact size as well as high RF performance. Compared to previously reported ring-based MPBPFs, this work achieves a record-high RF gain of 1.8 dB in the passband, with a high spectral resolution of 260 MHz. Furthermore, a multi-band MPBPF with optimized RF gain, tunable central frequencies, and frequency spacing tunability is realized using additional ring resonators, highlighting the scalability and flexibility of this chip-based MPBPF scheme.

10.
Opt Express ; 27(9): 12855-12868, 2019 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-31052820

RESUMO

Detection and frequency estimation of radio frequency (RF) signals are critical in modern RF systems, including wireless communication and radar. Photonic techniques have made huge progress in solving the problem imposed by the fundamental trade-off between detection range and accuracy. However, neither fiber-based nor integrated photonic RF signal detection and frequency estimation systems have achieved wide range and low error with high sensitivity simultaneously in a single system. In this paper, we demonstrate the first Brillouin opto-electronic oscillator (B-OEO) based on on-chip stimulated Brillouin scattering (SBS) to achieve RF signal detection. The broad tunability and narrowband amplification of on-chip SBS allow for the wide-range and high-accuracy detection. Feeding the unknown RF signal into the B-OEO cavity amplifies the signal which is matched with the oscillation mode to detect low-power RF signals. We are able to detect RF signals from 1.5 to 40 GHz with power levels as low as -67 dBm and a frequency accuracy of ± 3.4 MHz. This result paves the way to compact, fully integrated RF detection and channelization.

11.
Opt Lett ; 43(18): 4321-4324, 2018 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-30211854

RESUMO

Storing and delaying optical signals plays a crucial role in data centers, phased array antennas, communication, and future computing architectures. Here, we show a delay scheme based on cascaded Brillouin light storage that achieves multi-stage delay at arbitrary positions within a photonic integrated circuit. Importantly these multiple resonant transfers between the optical and acoustic domain are controlled solely via external optical control pulses, allowing cascading of the delay without the need of aligning multiple structural resonances along the optical circuit.

12.
Opt Lett ; 43(15): 3469-3472, 2018 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-30067687

RESUMO

Time-bin entangled photons allow robust entanglement distribution over quantum networks. Integrated photonic circuits positioned at the nodes of a quantum network can perform the important functions of generating highly entangled photons and precisely manipulating their quantum state. In this Letter, we demonstrate time-bin entangled photon generation, noise suppression, wavelength division, and entanglement analysis on a single photonic chip utilizing low-loss double-stripe silicon nitride waveguide structures. Quantum state tomography results show 91±0.7% fidelity compared with the ideal state, indicating that highly entangled photons are generated and analyzed. This work represents a crucial step toward practical quantum networks.

13.
Opt Lett ; 43(15): 3493-3496, 2018 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-30067693

RESUMO

Recent advances in design and fabrication of photonic-phononic waveguides have enabled stimulated Brillouin scattering in silicon-based platforms such as underetched silicon waveguides and hybrid waveguides. Due to the sophisticated design and, more importantly, high sensitivity of the Brillouin resonances to geometrical variations in micro- and nano-scale structures, it is necessary to have access to the localized opto-acoustic response along those waveguides to monitor their uniformity and maximize their interaction strength. In this Letter, we design and fabricate photonic-phononic waveguides with a deliberate width variation on a hybrid silicon-chalcogenide photonic chip and confirm the effect of the geometrical variation on the localized Brillouin response using a distributed Brillouin measurement.

14.
Phys Rev Lett ; 121(3): 033601, 2018 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-30085805

RESUMO

Multiphoton interference is central to photonic quantum information processing and quantum simulation, usually requiring multiple sources of nonclassical light followed by a unitary transformation on their modes. We observe interference in the four-photon events generated by a single silicon waveguide, where the different modes are six frequency channels. Rather than requiring a unitary transformation, the frequency correlations of the source are configured such that photons are generated in superposition states across multiple channels, and interference effects can be seen without further manipulation. The frequency correlations of the source also mean that it is effectively acting as multiple pair photon sources, generating photons in different spectral modes, which interfere with each other in a nontrivial manner. This suggests joint spectral engineering is a tool for controlling complex quantum photonic states without the difficulty of implementing spatially separate sources or a large unitary interferometer, which could have practical benefits in various applications of multiphoton interference.

15.
Opt Express ; 25(15): 17847-17863, 2017 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-28789276

RESUMO

Optical frequency comb lines with poor carrier to noise ratio (CNR) are significantly improved by Brillouin amplification using its extreme narrow bandwidth gain to suppress out of band noise, enabling higher quality signal modulation. Its application to spectral lines of narrow 10 GHz pitch and poor CNR is shown to suppress the otherwise strong phase distortion caused by poor CNR after encoding with 96 Gb/s DP-64-QAM signals and restore the bit error rate (BER) to below the limit for standard forward error correction (FEC). This is also achieved with the required frequency shifted optical pump for amplification obtained by seeding it from the comb itself, sparing the need for lasers and frequency locking. Simultaneous CNR improvement for 38 comb lines is also achieved with BER restored to below the FEC limit, enabled by a multi-line pump that is pre-dispersed to suppress its spectral distortion from the Kerr effect in the gain medium. Carrier performance at minimum BER shows minimal noise impact from the Brillouin amplifier itself. The results highlight the unique advantage of Brillouin gain for phase sensitive communications in transforming otherwise noisy spectral lines into useful high quality signal carriers.

16.
Opt Express ; 25(20): 23619-23633, 2017 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-29041313

RESUMO

We theoretically investigate lasing due to stimulated Brillouin scattering in integrated ring resonators. We give analytic expressions and numerical calculations for the lasing threshold for rings in the presence of for both linear and nonlinear loss. We demonstrate the operation of the ring in the different regimes of amplification and lasing, and show how these regimes depend on the coupling to the ring and on the nonlinear parameters. In the case of nonlinear losses, we find that there can exist an upper threshold to the lasing regime where the losses are dominated by free-carrier absorption. We also find that nonlinear losses can inhibit Brillouin lasing entirely for certain ranges of coupling parameters, and we show how the correct ranges of coupling parameters can be calculated and optimized for the design of integrated Brillouin lasers.

17.
Opt Lett ; 42(22): 4631-4634, 2017 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-29140330

RESUMO

We report a silicon nitride chip-based radio-frequency photonic notch filter with an unprecedented performance including an RF gain of 8 dB, a record-low noise figure of 15.6 dB, and a spurious-free dynamic range of 116 dB·Hz2/3, with a stop band rejection of 50 dB. This level of performance is achieved by using on-chip resonators' unique phase responses, and thorough optimizations of the photonic link. These record results will potentially stimulate future implementations of integrated microwave photonic subsystems for real-world applications.

18.
Opt Lett ; 42(9): 1668-1671, 2017 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-28454131

RESUMO

We demonstrate optical frequency conversion between telecom wavelengths using four-wave mixing Bragg scattering powered by two pump pulses polarized on orthogonal axes of a silicon waveguide. This allows conversion in a single frequency direction while, with co-polarized pumps, the signal is redshifted or blueshifted with similar efficiency. Our approach exploits the birefringence of the waveguide and its effect on the phase matching of the four-wave mixing process. The blue or red direction can be selected by the input polarization of the signal, and 20 dB extinction ratios are observed with the unintended direction. This technique will allow efficient and controlled conversion between specified wavelength channels in integrated photonic devices.

19.
Opt Lett ; 42(21): 4391-4394, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-29088171

RESUMO

We investigate single-channel and multichannel phase-sensitive amplification (PSA) in a highly nonlinear, CMOS-compatible spiral waveguide with ultralow linear and negligible nonlinear losses. We achieve a net gain of 10.4 dB and an extinction ratio of 24.6 dB for single-channel operation, as well as a 5 dB gain and a 15 dB extinction ratio spanning over a bandwidth of 24 nm for multiple-channel operation. In addition, we derive a simple analytic solution that enables calculating the maximum phase-sensitive gain in any Kerr medium featuring linear and nonlinear losses. These results not only give a clear guideline for designing PSA-based amplifiers but also show that it is possible to implement both optical regeneration and amplification in a single on-chip device.

20.
Opt Lett ; 42(24): 5074-5077, 2017 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-29240140

RESUMO

In this Letter, for the first time, to the best of our knowledge, we harness on-chip Brillouin scattering for narrowband amplification and spectral purification of frequency comb lines for coherent optical communications. A parametrically generated optical frequency comb with a low carrier-to-noise power ratio was filtered through narrowband Brillouin amplification utilizing the same comb as the optical pump. This was achieved on a photonic chip to enable successful transmission of an advanced modulation format signal: 64-level quadrature amplitude modulation. 96 Gb/s data were modulated on two polarizations on multiple comb lines across 1532.9-1557.5 nm, demonstrating the scalability of this concept for operation in wavelength division multiplexing applications. The small form factor of the photonic chip reduces the polarization drifts when compared to optical fibers and paves the way for photonic integration.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA