Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Emerg Infect Dis ; 29(4): 862-865, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36958011

RESUMO

To assess dynamics of SARS-CoV-2 in Greater Accra Region, Ghana, we analyzed SARS-CoV-2 genomic sequences from persons in the community and returning from international travel. The Accra Metropolitan District was a major origin of virus spread to other districts and should be a primary focus for interventions against future infectious disease outbreaks.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/epidemiologia , Gana/epidemiologia , Evolução Biológica , Surtos de Doenças
2.
Proc Natl Acad Sci U S A ; 117(31): 18649-18660, 2020 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-32690687

RESUMO

Starting at birth, the immune system of newborns and children encounters and is influenced by environmental challenges. It is still not completely understood how γδ T cells emerge and adapt during early life. Studying the composition of T cell receptors (TCRs) using next-generation sequencing (NGS) in neonates, infants, and children can provide valuable insights into the adaptation of T cell subsets. To investigate how neonatal γδ T cell repertoires are shaped by microbial exposure after birth, we monitored the γ-chain (TRG) and δ-chain (TRD) repertoires of peripheral blood T cells in newborns, infants, and young children from Europe and sub-Saharan Africa. We identified a set of TRG and TRD sequences that were shared by all children from Europe and Africa. These were primarily public clones, characterized by simple rearrangements of Vγ9 and Vδ2 chains with low junctional diversity and usage of non-TRDJ1 gene segments, reminiscent of early ontogenetic subsets of γδ T cells. Further profiling revealed that these innate, public Vγ9Vδ2+ T cells underwent an immediate TCR-driven polyclonal proliferation within the first 4 wk of life. In contrast, γδ T cells using Vδ1+ and Vδ3+TRD rearrangements did not significantly expand after birth. However, different environmental cues may lead to the observed increase of Vδ1+ and Vδ3+TRD sequences in the majority of African children. In summary, we show how dynamic γδ TCR repertoires develop directly after birth and present important differences among γδ T cell subsets.


Assuntos
Receptores de Antígenos de Linfócitos T gama-delta , Subpopulações de Linfócitos T/imunologia , África Subsaariana , Bactérias/imunologia , Criança , Pré-Escolar , Europa (Continente) , Rearranjo Gênico do Linfócito T/genética , Rearranjo Gênico do Linfócito T/imunologia , Humanos , Lactente , Recém-Nascido , Estudos Longitudinais , Receptores de Antígenos de Linfócitos T gama-delta/genética , Receptores de Antígenos de Linfócitos T gama-delta/imunologia
3.
BMC Microbiol ; 22(1): 180, 2022 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-35864456

RESUMO

BACKGROUND: The emergence of antimicrobial resistant bacteria in food producing animals is of growing concern to food safety and health. Staphylococci are common inhabitants of skin and mucous membranes in humans and animals. Infections involving antibiotic resistant staphylococci are associated with increased morbidity and mortality, with notable economic consequences. Livestock farms may enable cross-species transfer of antibiotic resistant staphylococci. The aim of the study was to investigate antimicrobial resistance patterns of staphylococci isolated from livestock and farm attendants in Northern Ghana using phenotypic and genotypic methods. Antimicrobial susceptibility testing was performed on staphylococci recovered from livestock and farm attendants and isolates resistant to cefoxitin were investigated using whole genome sequencing. RESULTS: One hundred and fifty-two staphylococci comprising S. sciuri (80%; n = 121), S. simulans (5%; n = 8), S. epidermidis (4%; n = 6), S. chromogens (3%; n = 4), S. aureus (2%; n = 3), S. haemolyticus (1%; n = 2), S. xylosus (1%; n = 2), S. cohnii (1%; n = 2), S. condimenti (1%; n = 2), S. hominis (1%; n = 1) and S. arlettae (1%; n = 1) were identified. The isolates showed resistance to penicillin (89%; n = 135), clindamycin (67%; n = 102), cefoxitin (19%; n = 29), tetracycline (15%; n = 22) and erythromycin (11%; n = 16) but showed high susceptibility to gentamicin (96%; n = 146), sulphamethoxazole/trimethoprim (98%; n = 149) and rifampicin (99%; n = 151). All staphylococci were susceptible to linezolid and amikacin. Carriage of multiple resistance genes was common among the staphylococcal isolates. Genome sequencing of methicillin (cefoxitin) resistant staphylococci (MRS) isolates revealed majority of S. sciuri (93%, n = 27) carrying mecA1 (which encodes for beta-lactam resistance) and the sal(A) gene, responsible for resistance to lincosamide and streptogramin. Most of the MRS isolates were recovered from livestock. CONCLUSION: The study provides insights into the genomic content of MRS from farm attendants and livestock in Ghana and highlights the importance of using whole-genome sequencing to investigate such opportunistic pathogens. The finding of multi-drug resistant staphylococci such as S. sciuri carrying multiple resistant genes is of public health concern as they could pose a challenge for treatment of life-threatening infections that they may cause.


Assuntos
Infecções Estafilocócicas , Staphylococcus , Animais , Antibacterianos/farmacologia , Cefoxitina , Farmacorresistência Bacteriana/genética , Fazendas , Genômica , Gana , Humanos , Gado , Testes de Sensibilidade Microbiana , Infecções Estafilocócicas/epidemiologia , Infecções Estafilocócicas/microbiologia , Infecções Estafilocócicas/veterinária , Staphylococcus aureus , Staphylococcus epidermidis
4.
BMC Microbiol ; 20(1): 253, 2020 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-32795260

RESUMO

BACKGROUND: Typically, raw meat can be contaminated with antibiotic resistant pathogens at unhygienic slaughter and sale points. Consumption of meat contaminated with antibiotic resistant E. coli is associated with grave health care consequences. The aim of this study was to determine the microbial quality of raw meat, the antimicrobial susceptibility and Extended Spectrum Beta Lactamase (ESBL) production in E. coli isolates from raw meat. RESULTS: Total Plate Counts exceeded the acceptable limit of 5.0 log CFU/ cm2 in 60.5% (124/205) of raw meat samples. Total Coliform Counts in 70.7% (145/205) of samples were in excess of the acceptable limit of 2.5 log CFU/cm2. E. coli was detected in about half of raw meat samples (48%), ranging from 9.5-79.0% among the slaughter sites. Isolates were susceptible to meropenem (100%), ceftriaxone (99%), cefotaxime (98%), chloramphenicol (97%), gentamycin (97%), ciprofloxacin (92%) and amikacin (92%), but resistant to ampicillin (57%), tetracycline (45%), sulfamethoxazole-trimethoprim (21%) and cefuroxime (17%). Multi-drug resistance (MDR) was identified in 22% of the isolates. The blaTEM gene was detected in 4% (4/98) of E. coli isolates in this study. CONCLUSION: The levels of microbial contamination of raw meat in this study were unacceptable. Meat handlers and consumers are at risk of foodborne infections from E. coli including ESBL producing E. coli that are resistant to most antibiotics in use. We recommend an enhanced surveillance for antibiotic resistance in food products for the early detection of emerging resistant bacteria species in the food chain.


Assuntos
Antibacterianos/farmacologia , Farmacorresistência Bacteriana Múltipla , Escherichia coli/classificação , Carne/microbiologia , beta-Lactamases/metabolismo , Animais , Escherichia coli/genética , Escherichia coli/isolamento & purificação , Microbiologia de Alimentos , Gana , Limite de Detecção , Testes de Sensibilidade Microbiana , beta-Lactamases/genética
5.
J Water Health ; 18(6): 890-898, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33328361

RESUMO

This study examined the occurrence and molecular basis for antibiotic-resistant staphylococci from the wastewater treatment plant and grey-water samples in Obafemi Awolowo University, Nigeria. Standard microbiological techniques and molecular methods were utilized. The species identified (MALDI score >1.7) comprised S. saprophyticus (19), S. cohnii (8), S. sciuri (7), S. aureus (4), S. epidermidis (3), S. warneri (2), S. equorum (1), S. haemolyticus (1), S. nepalensis (1), S. condimenti (1), and S. pasteuri (1). Resistance to trimethoprim, tetracycline and cefoxitin were observed in 78.3% (47/60), 36.7% (22/60) and 25% (15/60) of the isolates, respectively. The rate of multidrug resistance was 53.3% (32/60) and observed in eight species from different sampling sites. Seven (S. sciuri; n = 5; S. aureus; n = 1; S. warneri; n = 1) of the 20 selected (representing the various staphylococcal species and antibiotypes) isolates were mecA-positive. Furthermore, the tetK gene was detected in nine isolates, six with dfrA, and four were positive for the dfrG gene. One S. aureus was mecA, tetK and dfrG gene positive. The study provides insights on antibiotic-resistant staphylococci from a non-clinical setting and highlights the need for active surveillance to understand the burden of antimicrobial resistance in Nigeria. This is key to improve synergy across the human, animal and environmental health sectors in Nigeria.


Assuntos
Staphylococcus , Purificação da Água , Animais , Antibacterianos/farmacologia , Humanos , Testes de Sensibilidade Microbiana , Nigéria , Staphylococcus/genética , Staphylococcus aureus/genética , Universidades , Água
6.
Proc Natl Acad Sci U S A ; 114(49): E10596-E10604, 2017 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-29158405

RESUMO

USA300 is a pandemic clonal lineage of hypervirulent, community-acquired, methicillin-resistant Staphylococcus aureus (CA-MRSA) with specific molecular characteristics. Despite its high clinical relevance, the evolutionary origin of USA300 remained unclear. We used comparative genomics of 224 temporal and spatial diverse S. aureus isolates of multilocus sequence type (ST) 8 to reconstruct the molecular evolution and global dissemination of ST8, including USA300. Analyses of core SNP diversity and accessory genome variations showed that the ancestor of all ST8 S. aureus most likely emerged in Central Europe in the mid-19th century. From here, ST8 was exported to North America in the early 20th century and progressively acquired the USA300 characteristics Panton-Valentine leukocidin (PVL), SCCmec IVa, the arginine catabolic mobile element (ACME), and a specific mutation in capsular polysaccharide gene cap5E Although the PVL-encoding phage ϕSa2USA was introduced into the ST8 background only once, various SCCmec types were introduced to ST8 at different times and places. Starting from North America, USA300 spread globally, including Africa. African USA300 isolates have aberrant spa-types (t112, t121) and form a monophyletic group within the clade of North American USA300. Large parts of ST8 methicillin-susceptible S. aureus (MSSA) isolated in Africa represent a symplesiomorphic group of ST8 (i.e., a group representing the characteristics of the ancestor), which are rarely found in other world regions. Isolates previously discussed as USA300 ancestors, including USA500 and a "historic" CA-MRSA from Western Australia, were shown to be only distantly related to recent USA300 clones.


Assuntos
Evolução Molecular , Genoma Bacteriano , Staphylococcus aureus Resistente à Meticilina/genética , Filogenia , Infecções Estafilocócicas/epidemiologia , Infecções Estafilocócicas/transmissão , África/epidemiologia , Austrália/epidemiologia , Toxinas Bacterianas/genética , Toxinas Bacterianas/metabolismo , Teorema de Bayes , Infecções Comunitárias Adquiridas , Europa (Continente)/epidemiologia , Exotoxinas/genética , Exotoxinas/metabolismo , Humanos , Sequências Repetitivas Dispersas , Leucocidinas/genética , Leucocidinas/metabolismo , Staphylococcus aureus Resistente à Meticilina/classificação , Staphylococcus aureus Resistente à Meticilina/isolamento & purificação , Staphylococcus aureus Resistente à Meticilina/patogenicidade , Tipagem de Sequências Multilocus , América do Norte/epidemiologia , Filogeografia , Polimorfismo de Nucleotídeo Único , Infecções Estafilocócicas/microbiologia , Infecções Estafilocócicas/patologia , Sistemas de Secreção Tipo IV/genética , Sistemas de Secreção Tipo IV/metabolismo
7.
PLoS One ; 19(1): e0296971, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38252613

RESUMO

INTRODUCTION: Salmonella is considered one of the most significant pathogens in public health since it is a bacterium that is frequently linked to food-borne illnesses in humans. Some Salmonella serovars are responsible for outbreaks that are connected to the consumption of animal products. Cattle are connected to humans through a shared environment and the food chain as a significant source of animal protein. In Nigeria, antimicrobial medications are easily accessible for use in food-producing animals. Abattoir environments are reservoirs of foodborne bacteria like non-typhoidal Salmonella enterica (NTS), that have become resistant to antibiotics used for prophylaxis or treatment in animals. This study investigated the prevalence and resistance patterns of Salmonella enterica serovars in abattoir employees, beef cattle and abattoir environments in Abuja and Lagos, Nigeria. METHODS: A total of 448 samples were collected from healthy personnel, slaughtered cattle, and abattoir environments between May and December 2020. Using Kirby-Bauer disk diffusion method, the resistance profile of NTS isolates were determined. Multidrug resistance (MDR) was considered when NTS was resistant to ≥3 antimicrobial drug classes. We performed phenotypic and genotypic characterizations of all Salmonella isolates including serotyping. Descriptive statistics were used to analyze the data. RESULTS: Twenty-seven (6%) NTS isolates were obtained. Prevalence of NTS was highest in abattoir environments (15.5%; 9/58), followed by cattle (4.8%;13/272) and abattoir employees (4.2%; 5/118). A high prevalence of resistance was observed for gentamicin (85.2%; 23/27) and tetracycline (77.8%; 21/27). Whole-genome sequencing of 22 NTS showed dissemination of aac(6')-laa (22/22), qnrB19 (1/22), fosA7 (1/22), and tetA (1/22) genes. Serovar diversity of NTS varied with source. S. Anatum, a rare serovar predominated with a prevalence of 18.2% (4/22). Chromosomal point mutations showed ParC T57S substitution in 22 NTS analyzed. Among 22 NTS, 131 mobile genetic elements (MGEs) were detected including insertion sequences (56.5%) and miniature inverted repeats (43.5%). Two integrating MGEs IS6 and IS21 were observed to carry the tetA gene + Incl-1 on the same contig in NTS originating from cattle. Rare serovars namely S. Abony and S. Stormont with MDR phenotypes recovered from cattle and abattoir environments were closely related with a pairwise distance of ≤5 SNPs. CONCLUSIONS: First report of rare serovars in Nigeria with MDR phenotypes in humans, cattle, and abattoir environments. This study demonstrates the spread of resistance in the abattoir environment possibly by MGEs and emphasizes the importance of genomic surveillance. Beef cattle may be a risk to public health because they spread a variety of rare Salmonella serovars. Therefore, encouraging hand hygiene among abattoir employees while processing beef cattle will further reduce NTS colonization in this population. This requires a One Health collaborative effort among various stakeholders in human health, animal health, and environmental health.


Assuntos
Peixes-Gato , Salmonella enterica , Febre Tifoide , Humanos , Bovinos , Animais , Sorogrupo , Salmonella enterica/genética , Nigéria/epidemiologia , Matadouros , Antibacterianos/farmacologia
8.
Microorganisms ; 12(6)2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38930521

RESUMO

Escherichia coli, a member of the commensal intestinal microbiota, is a significant aetiology of urinary tract infections (UTIs) and has a propensity for acquiring multidrug resistance characteristics, such as extended-spectrum beta-lactamases (ESBLs). Despite the increase in the incidence of ESBL-producing E. coli infections in sub-Saharan Africa, routine ESBL detection in Ghana is often absent, and molecular data on ESBL genotypes is scarce. Eleven ESBL-producing E. coli recovered from mid-stream urine samples were subjected to antimicrobial susceptibility testing and whole-genome sequence analyses. All isolates exhibited multidrug resistance, demonstrating phenotypic resistance to third-generation cephalosporins, such as cefotaxime, ceftazidime, and cefpodoxime. Three isolates demonstrated resistance to norfloxacin (a fluoroquinolone), and one isolate demonstrated intermediate resistance to ertapenem (a carbapenem). Analysis of the draft genomes identified multiple antimicrobial resistance genes including ESBL genotypes blaTEM-1B/TEM-190 (6/11 and 1/11, respectively), blaCTX-M-15/CTX-M-3 (7/11 and 1/11) and blaOXA-1/OXA-181 (3/11 and 1/11). The strains belong to 10 different serotypes and 10 different multilocus sequence types. This study provides information on phenotypic resistance in 11 ESBL E. coli from Ghana and AMR genotypes within their genomes.

9.
PLoS One ; 19(5): e0301531, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38787855

RESUMO

Wastewater discharge into the environment in resource-poor countries poses a threat to public health. Studies in this area within these countries are limited, and the use of high-throughput whole-genome sequencing technologies is lacking. Therefore, understanding of environmental impacts is inadequate. The present study investigated the antibiotic resistance profiles and diversity of beta-lactamases in Escherichia coli strains isolated from environmental water sources in Accra, Ghana. Microbiological analyses were conducted on wastewater samples from three hospitals, a sewage and wastewater treatment plant, and water samples from two urban surface water bodies. Confirmed isolates (N = 57) were selected for phenotypic antibiotic resistance profiles. Multi-drug-resistant isolates (n = 25) were genome sequenced using Illumina MiSeq sequencing technology and screened for sequence types, antibiotic resistance, virulence and beta-lactamase genes, and mobile genetic elements. Isolates were frequently resistant to ampicillin (63%), meropenem (47%), azithromycin (46%), and sulfamethoxazole-trimethoprim (42%). Twenty different sequence types (STs) were identified, including clinically relevant ones such as ST167 and ST21. Five isolates were assigned to novel STs: ST14531 (n = 2), ST14536, ST14537, and ST14538. The isolates belonged to phylogroups A (52%), B1 (44%), and B2 (4%) and carried ß-lactamase (TEM-1B, TEM-1C, CTX-M-15, and blaDHA-1) and carbapenemase (OXA-1, OXA-181) resistance genes. Dominant plasmid replicons included Col440I (10.2%) and IncFIB (AP001918) (6.8%). Polluted urban environments in Accra are reservoirs for antibiotic-resistant bacteria, posing a substantial public health risk. The findings underscore the need for targeted public health interventions to mitigate the spread of antibiotic-resistant bacteria and protect public health.


Assuntos
Farmacorresistência Bacteriana Múltipla , Escherichia coli , Águas Residuárias , beta-Lactamases , Gana , Escherichia coli/genética , Escherichia coli/efeitos dos fármacos , Escherichia coli/isolamento & purificação , Farmacorresistência Bacteriana Múltipla/genética , beta-Lactamases/genética , Humanos , Águas Residuárias/microbiologia , Saúde Pública , Antibacterianos/farmacologia , Microbiologia da Água , Testes de Sensibilidade Microbiana , Genômica , Sequenciamento Completo do Genoma , Filogenia , Esgotos/microbiologia , Genoma Bacteriano
10.
Antibiotics (Basel) ; 13(5)2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38786195

RESUMO

Antimicrobial resistance (AMR) among Escherichia coli from food animals is a rising problem, and heavy antimicrobial use in poultry is a contributing factor. In Zambia, studies linking poultry-associated AMR and antibiotic use (AMU) are rare. This study aimed to investigate commercial and medium-/small-scale poultry farmers' usage of antimicrobials based on a questionnaire survey in ten districts of Zambia. In addition, the study characterized extended-spectrum ß-lactamase (ESBL)-producing E. coli isolates obtained from poultry in the same districts. Data regarding knowledge and usage of antimicrobials were collected from commercial and medium-/small-scale poultry farmers using a pre-tested structured questionnaire. At the same time, cloacal samples were collected and analyzed. One hundred and fifty E. coli isolates were tested for antimicrobial susceptibility using eight antibiotic classes. The isolates were further screened for ESBL production by streaking them on cefotaxime (CTX)-supplemented MacConkey agar, then subjecting them to sequencing on a NextSeq. The questionnaire survey showed that more medium-/small-scale than commercial poultry farmers used antimicrobials (OR = 7.70, 95% CI = 2.88-20.61) but less prescriptions (OR = 0.02, 95% CI = 0.00-0.08). Susceptibility testing revealed that resistance was highest to ampicillin (128/148, 86.5%) and tetracycline (101/136, 74.3%) and that the prevalence of multidrug resistance (MDR) (28/30, 93.3%) was high. Whole-genome sequencing (WGS) of eight (8/30, 26.7%) isolates with CTX Minimum Inhibitory Concentration (MIC) ≥ 4 µg/mL revealed the presence of ESBL-encoding genes blaCTX-M-14, blaCTX-M-55, and blaTEM. WGS also detected other AMR genes for quinolones, aminoglycosides, phenicols, tetracycline, macrolides, and folate-pathway antagonists. Altogether, the questionnaire survey results showed a higher proportion of AMU and lower prescription usage among medium-/small-scale farmers. In addition, our results emphasize the circulation of ESBL-producing E. coli strains with associated MDR. It is critical to educate farmers about AMR risks and to encourage responsible usage of antimicrobials. Furthermore, there is a need to strengthen regulations limiting access to antimicrobials. Finally, there is a need to establish a one health system to guide public health response.

11.
Afr J Lab Med ; 12(1): 2053, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37293314

RESUMO

Background: Antimicrobial resistance (AMR) surveillance plays an important role in early detection of resistant strains of pathogens and informs treatments decisions at local, regional and national levels. In 2017, Tanzania developed a One Health AMR Surveillance Framework to guide establishment of AMR surveillance systems in the human and animal sectors. Aim: We reviewed AMR surveillance studies in Tanzania to document progress towards establishing an AMR surveillance system and determine effective strengthening strategies. Methods: We conducted a literature review on AMR studies conducted in Tanzania by searching Google Scholar, PubMed, and the websites of the Tanzania Ministry of Health and the World Health Organization for articles written in English and published from January 2012 to March 2021 using relevant search terms. Additionally, we reviewed applicable guidelines, plans, and reports from the Tanzanian Ministry of Health. Results: We reviewed 10 articles on AMR in Tanzania, where studies were conducted at hospitals in seven of Tanzania's 26 regions between 2012 and 2019. Nine AMR sentinel sites had been established, and there was suitable and clear coordination under 'One Health'. However, sharing of surveillance data between sectors had yet to be strengthened. Most studies documented high resistance rates of Gram-negative bacteria to third-generation cephalosporins. There were few laboratory staff who were well trained on AMR. Conclusion: Important progress has been made in establishing a useful, reliable AMR surveillance system. Challenges include a need to develop, implement and build investment case studies for the sustainability of AMR surveillance in Tanzania and ensure proper use of third-generation cephalosporins. What this study adds: This article adds to the knowledge base of AMR trends in Tanzania and progress made in the implementation of AMR surveillance in human health sector as a contribution to the global AMR initiatives to reduce AMR burden worldwide. It has highlighted key gaps that need policy and implementation level attention.

12.
Microbiol Resour Announc ; 12(1): e0089322, 2023 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-36453948

RESUMO

Whole-genome sequence data for clinically relevant Gram-negative bacteria from the African continent are scarce. In this report, we present the draft genome sequence data and antibiograms of four species, namely, Kerstersia gyiorum, Providencia vermicola, Providencia stuartii, and Alcaligenes faecalis, that were recovered from human soft tissue biopsy samples.

13.
Front Microbiol ; 14: 1254896, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38192291

RESUMO

Introduction: Enterococcus spp. have gradually evolved from commensals to causing life-threatening hospital-acquired infections globally due to their inherent antimicrobial resistance ability and virulence potential. Enterococcus spp. recovered from livestock and raw meat samples were characterized using antimicrobial susceptibility testing and whole-genome sequencing. Materials and methods: Isolates were confirmed using the MALDI-ToF mass spectrometer, and antimicrobial susceptibility was determined using the Kirby-Bauer disk diffusion method. Whole genome sequencing was performed on isolates resistant to two or more antibiotics. Bioinformatics analysis was performed to determine sequence types, resistance and virulence gene content and evolutionary relationships between isolates from meat and livestock samples, and other enterococci genomes curated by PATRIC. eBURST analysis was used to assign genomes to clonal complexes. Results: Enterococcus spp. were predominantly E. faecalis (96/236; 41%) and E. faecium (89/236; 38%). Overall, isolates showed resistance to erythromycin (78/236; 33%), tetracycline (71/236; 30%), ciprofloxacin (20/236; 8%), chloramphenicol (12/236; 5%), linezolid (7/236; 3%), ampicillin (4/236; 2%) and vancomycin (1/236, 0.4%). Resistance to two or more antimicrobial agents was detected among 17% (n = 40) Enterococcus spp. Resistance genes for streptogramins [lsa(A), lsa(E), msr(C)], aminoglycosides [aac(6')-Ii, aph(3')-III, ant(6)-Ia, aac(6')-aph(2″), str], amphenicol [cat], macrolides [erm(B), erm(T), msr(C)], tetracyclines [tet(M), tet(L), tet(S)] and lincosamides [lsa(A), lsa(E), lnu(B)] were detected among the isolates. Genes for biofilm formation, adhesins, sex pheromones, cytolysins, hyaluronidase, oxidative stress resistance, quorum-sensing and anti-phagocytic activity were also identified. Potential plasmids with replicon sequences (rep1, rep2, repUS43, repUS47, rep9a, rep9b) and other mobile genetic elements (Tn917, cn_5536_ISEnfa1, Tn6009, ISEnfa1, ISEfa10) were detected. Clinically relevant E. faecium ST32 and ST416 clones were identified in meat samples. Conclusion: The occurrence of antimicrobial-resistant Enterococcus spp. in livestock and raw meat samples, carrying multiple resistance and virulence genes, including known clones associated with hospital-acquired infections, underscores the critical need for employing robust tools like whole genome sequencing. Such tools provide detailed data essential for ongoing surveillance efforts aimed at addressing the challenge of antimicrobial resistance with a focus on one health.

14.
Heliyon ; 9(7): e18299, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37539285

RESUMO

Here we report a new polyhydroxylated triterpene, 2ß,6ß,21α-trihydroxyfriedelan-3-one (4) isolated from the root and stem bark of Dichapetalum albidum A. Chev (Dichapetalaceae), along with six known triterpenoids (1-3, 5, 6, 8), sitosterol-3ß-O-D-glucopyranoside (9), a dipeptide (7), and a tyramine derivative of coumaric acid (10). Friedelan-3-one (2) showed an antimicrobial activity (IC50) of 11.40 µg/mL against Bacillus cereus, while friedelan-3α-ol (1) gave an IC50 of 13.07 µg/mL against Staphylococcus aureus with ampicillin reference standard of 19.52 µg/mL and 0.30 µg/mL respectively. 3ß-Acetyl tormentic acid (5) showed an IC50 of 12.50 µg/mL against Trypanosoma brucei brucei and sitosterol-3ß-O-d-glucopyranoside (9) showed an IC50 of 5.06 µg/mL against Leishmania donovani with respective reference standards of IC50 5.02 µg/mL for suramin and IC50 0.27 µg/mL for amphotericin B. Molecular docking of the isolated compounds on the enzyme glucose-6-phosphate dehydrogenase (G6PDH) suggested 3ß-acetyl tormentic acid (5) and sitosterol-3ß-O-D-glucopyranoside (9) as plausible inhibitors of the enzyme in accordance with the experimental biological results observed.

15.
Antibiotics (Basel) ; 12(6)2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-37370334

RESUMO

Beta-lactamase (ß-lactamase)-producing Gram-negative bacteria (GNB) are of public health concern due to their resistance to routine antimicrobials. We investigated the antimicrobial resistance and occurrence of carbapenemases, extended-spectrum ß-lactamases (ESBLs) and AmpCs among GNB from clinical sources. GNB were identified using matrix-assisted laser desorption/ionization time of flight-mass spectrometry (MALDITOF-MS). Antimicrobial susceptibility testing was performed via Kirby-Bauer disk diffusion and a microscan autoSCAN system. ß-lactamase genes were determined via multiplex polymerase chain reactions. Of the 181 archived GNB analyzed, Escherichia coli and Klebsiella pneumoniae constituted 46% (n = 83) and 17% (n = 30), respectively. Resistance to ampicillin (51%), third-generation cephalosporins (21%), and ertapenem (21%) was observed among the isolates, with 44% being multi-drug resistant (MDR). ß-lactamase genes such as AmpCs ((blaFOX-M (64%) and blaDHA-M and blaEDC-M (27%)), ESBLs ((blaCTX-M (81%), other ß-lactamase genes blaTEM (73%) and blaSHV (27%)) and carbapenemase ((blaOXA-48 (60%) and blaNDM and blaKPC (40%)) were also detected. One K. pneumoniae co-harbored AmpC (blaFOX-M and blaEBC-M) and carbapenemase (blaKPC and blaOXA-48) genes. blaOXA-48 gene was detected in one carbapenem-resistant Acinetobacter baumannii. Overall, isolates were resistant to a wide range of antimicrobials including last-line treatment options. This underpins the need for continuous surveillance for effective management of infections caused by these pathogens in our settings.

16.
Int J Food Microbiol ; 396: 110195, 2023 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-37030061

RESUMO

This study sought to investigate microbial quality and antimicrobial resistance of bacteria species from Ready-to-Eat (RTE) food, water, and vendor palm swab samples. Between 2019 and 2020, RTE food, water and vendor palm swab samples were collected from food vending sites in Accra, Ghana. Samples were cultured and confirmed using the Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF). Antimicrobial susceptibility testing (AST) was conducted using disk diffusion method. Beta-lactamase and Diarrheagenic Escherichia coli (DEC) genes were determined using Polymerase Chain Reaction (PCR). Total plate count (TPC) and Total coliform count (TCC) were performed on food and water samples. In total, 179 RTE food, 72 water and 10 vendor palm swab samples were collected. Enterobacter spp. (16.8 %), Citrobacter spp. (10.1 %), Enterococcus faecalis (7.8 %), Pseudomonas spp. (6.7 %) and Klebsiella pneumoniae (4.0 %) occurred in food. Isolates from water and palm were Klebsiella pneumoniae (20.8 %), Aeromonas spp. (16.7 %) and Enterobacter cloacae (11.1 %). Resistance to Amoxicillin-clavulanate, Tetracycline, Azithromycin, Sulfamethoxazole-trimethoprim, and Nitrofurantoin were common among Enterobacterales. High mean TPC and TCC showed in some RTE food and different water types used in vending depicting their unsafe condition for consumption and usage. The blaSHV and blaTEM genes were present in some Enterobacterales from food and water. The lt gene was identified in two food samples. AMR organisms associated with nosocomial infections in the samples investigated, calls for continuous surveillance in the food industry in Ghana. Also, the unsafe outcome of RTE food and water depicts the need for the enforcement of Ghana's food safety laws.


Assuntos
Antibacterianos , Microbiologia de Alimentos , Antibacterianos/farmacologia , Gana , Farmacorresistência Bacteriana/genética , Bactérias , beta-Lactamases , Escherichia coli , Testes de Sensibilidade Microbiana
17.
Front Microbiol ; 14: 1163450, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37455743

RESUMO

Introduction: Gonorrhoea is a major public health concern. With the global emergence and spread of resistance to last-line antibiotic treatment options, gonorrhoea threatens to be untreatable in the future. Therefore, this study performed whole genome characterization of Neisseria gonorrhoeae collected in Ghana to identify lineages of circulating strains as well as their phenotypic and genotypic antimicrobial resistance (AMR) profiles. Methods: Whole genome sequencing (WGS) was performed on 56 isolates using both the Oxford Nanopore MinION and Illumina MiSeq sequencing platforms. The Comprehensive Antimicrobial Resistance Database (CARD) and PUBMLST.org/neisseria databases were used to catalogue chromosomal and plasmid genes implicated in AMR. The core genome multi-locus sequence typing (cgMLST) approach was used for comparative genomics analysis. Results and Discussion: In vitro resistance measured by the E-test method revealed 100%, 91.0% and 85.7% resistance to tetracycline, penicillin and ciprofloxacin, respectively. A total of 22 sequence types (STs) were identified by multilocus sequence typing (MLST), with ST-14422 (n = 10), ST-1927 (n = 8) and ST-11210 (n = 7) being the most prevalent. Six novel STs were also identified (ST-15634, 15636-15639 and 15641). All isolates harboured chromosomal AMR determinants that confer resistance to beta-lactam antimicrobials and tetracycline. A single cefixime-resistant strain, that belongs to N. gonorrhoeae multiantigen sequence type (NG-MAST) ST1407, a type associated with widespread cephalosporin resistance was identified. Neisseria gonorrhoeae Sequence Typing for Antimicrobial Resistance (NG-STAR), identified 29 unique sequence types, with ST-464 (n = 8) and the novel ST-3366 (n = 8) being the most prevalent. Notably, 20 of the 29 STs were novel, indicative of the unique nature of molecular AMR determinants in the Ghanaian strains. Plasmids were highly prevalent: pTetM and pblaTEM were found in 96% and 92% of isolates, respectively. The TEM-135 allele, which is an amino acid change away from producing a stable extended-spectrum ß-lactamase that could result in complete cephalosporin resistance, was identified in 28.5% of the isolates. Using WGS, we characterized N. gonorrhoeae strains from Ghana, giving a snapshot of the current state of gonococcal AMR in the country and highlighting the need for constant genomic surveillance.

18.
Lancet Microbe ; 4(12): e1040-e1046, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37977161

RESUMO

Integration of genomic technologies into routine antimicrobial resistance (AMR) surveillance in health-care facilities has the potential to generate rapid, actionable information for patient management and inform infection prevention and control measures in near real time. However, substantial challenges limit the implementation of genomics for AMR surveillance in clinical settings. Through a workshop series and online consultation, international experts from across the AMR and pathogen genomics fields convened to review the evidence base underpinning the use of genomics for AMR surveillance in a range of settings. Here, we summarise the identified challenges and potential benefits of genomic AMR surveillance in health-care settings, and outline the recommendations of the working group to realise this potential. These recommendations include the definition of viable and cost-effective use cases for genomic AMR surveillance, strengthening training competencies (particularly in bioinformatics), and building capacity at local, national, and regional levels using hub and spoke models.


Assuntos
Antibacterianos , Farmacorresistência Bacteriana , Humanos , Antibacterianos/uso terapêutico , Antibacterianos/farmacologia , Farmacorresistência Bacteriana/genética , Genômica , Instalações de Saúde , Biologia Computacional
19.
Lancet Microbe ; 4(12): e1056-e1062, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37977165

RESUMO

The intersection of human, animal, and ecosystem health at One Health interfaces is recognised as being of key importance in the evolution and spread of antimicrobial resistance (AMR) and represents an important, and yet rarely realised opportunity to undertake vital AMR surveillance. A working group of international experts in pathogen genomics, AMR, and One Health convened to take part in a workshop series and online consultation focused on the opportunities and challenges facing genomic AMR surveillance in a range of settings. Here we outline the working group's discussion of the potential utility, advantages of, and barriers to, the implementation of genomic AMR surveillance at One Health interfaces and propose a series of recommendations for addressing these challenges. Embedding AMR surveillance at One Health interfaces will require the development of clear beneficial use cases, especially in low-income and middle-income countries. Evidence of directionality, risks to human and animal health, and potential trade implications were also identified by the working group as key issues. Addressing these challenges will be vital to enable genomic surveillance technology to reach its full potential for assessing the risk of transmission of AMR between the environment, animals, and humans at One Health interfaces.


Assuntos
Antibacterianos , Saúde Única , Animais , Humanos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Farmacorresistência Bacteriana/genética , Ecossistema , Genômica
20.
Antibiotics (Basel) ; 12(2)2023 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-36830166

RESUMO

BACKGROUND: Antimicrobial resistance (AMR) in Gram-negative bacteria-causing bloodstream infections (BSIs), such as Klebsiella pneumoniae and non-typhoidal Salmonella (NTS), is a major public health concern. Nonetheless, AMR surveillance remains scarce in sub-Saharan Africa, where BSI treatment is largely empirical. The aim of the study was to determine the distribution and AMR patterns of BSI-causing NTS, K. pneumoniae, and other Gram-negative bacteria in Ghana. METHODS: A cross-sectional study was conducted between April and December 2021 at eleven sentinel health facilities across Ghana as part of a pilot study on the feasibility and implementation of the human sector AMR surveillance harmonized protocol in sub-Saharan Africa. Gram-negative bacteria recovered from blood specimens of febrile patients were identified using MALDI-TOF and evaluated for antimicrobial resistance using the BD Phoenix M50 analyzer and Kirby-Bauer disc diffusion. The Department of Medical Microbiology at the University of Ghana served as the reference laboratory. RESULTS: Out of 334 Gram-negative blood isolates, there were 18 (5.4%) NTS, 85 (25.5%) K. pneumoniae, 88 (26.4%) Escherichia coli, 40 (12.0%) Acinetobacter baumannii, 25 (7.5%) Pseudomonas aeruginosa, and 77 (23.1%) other Gram-negative bacteria. As a composite, the isolates displayed high resistance to the antibiotics tested-amoxicillin (89.3%), tetracycline (76.1%), trimethoprim-sulfamethoxazole (71.5%), and chloramphenicol (59.7%). Resistance to third-generation cephalosporins [ceftriaxone (73.7%), cefotaxime (77.8%), and ceftazidime (56.3%)] and fluoroquinolones [ciprofloxacin (55.3%)] was also high; 88% of the isolates were multidrug resistant, and the rate of extended-spectrum beta-lactamase (ESBL) production was 44.6%. Antibiotic resistance in K. pneumoniae followed the pattern of all Gram-negative isolates. Antibiotic resistance was lower in NTS blood isolates, ranging between 16.7-38.9% resistance to the tested antibiotics. Resistance rates of 38.9%, 22.2%, and 27.8% were found for cefotaxime, ceftriaxone, and ceftazidime, respectively, and 27.8% and 23.8% for ciprofloxacin and azithromycin, respectively, which are used in the treatment of invasive NTS. The prevalence of multidrug resistance in NTS isolates was 38.9%. CONCLUSIONS: Multicenter AMR surveillance of Gram-negative blood isolates from febrile patients was well-received in Ghana, and the implementation of a harmonized protocol was feasible. High resistance and multidrug resistance to first- or second-choice antibiotics, including penicillins, third-generation cephalosporins, and fluoroquinolones, were found, implying that these antibiotics might have limited effectiveness in BSI treatment in the country. Continuation of AMR surveillance in Gram-negative blood isolates is essential for a better understanding of the extent of AMR in these pathogens and to guide clinical practice and policymaking.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA